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I would like to thank several people for the privilege to visit their group and work with them

during my thesis. First, Moez Draief at Imperial College in London, then Nikolaos Fountoulakis

at Max-Planck-Institut in Saarbrc̈ken, and finally Yuval Peres for visiting his group at Microsoft

research in Redmond. I’m grateful for fruitful discussion with the members of these respective

groups.

L’application en finance d’une partie de mes travaux n’aurait pas été possible sans l’apport
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Preface

L’omniprésence des réseaux dans tous les aspects de la vie moderne et les problèmes associés

ont incité de nombreuses recherches dans le but de comprendre et prédire le comportement de

telles structures irrégulièrs, complexes, et évolutives. Les exemples de réseaux vont de l’Internet

jusqu’aux interconnexions d’agents financiers ou bien aux réseaux neuronaux.

Doté de grande capacité de calcul et de la disponibilité de larges ensembles de données

sur des réseaux réels (comme l’Internet, les réseaux de transport, réseaux de téléphone, réseaux

coauteurs scientifiques, réseaux protéine-protéine biologiques, etc.), l’étude de réseaux complexes

a émergé comme un domaine à croissance rapide.

La plupart des réseaux réels sont très grands, de plusieurs milliers de noeuds dans un réseau

d’entreprises à plusieurs milliards de noeuds dans certains systèmes biologiques. En raison de

leur complexité, leurs relations ne peuvent être décrites qu’en termes statistiques. L’une des

observations les plus frappantes est la suivante : des réseaux avec des fonctions complètement

différentes, comme par exemple des réseaux sociaux et des réseaux biologiques, partagent des

caractéristiques communes. En particulier, nombre de ces systèmes sont des ”petits-mondes”,

ce qui traduit le fait que la distance topologique moyenne dans le réseau (qui mesure le nombre

moyen de liens à franchir sur le réseau pour aller d’un site à un autre) varie très lentement avec

le nombre total de sites (typiquement comme un logarithme).

Une autre découverte particulièrement importante est le fait que la fréquence d’apparition de

sites avec k voisins (sites de degré k) est une distribution en loi de puissance : si on définit la dis-

tribution des degrés par pk (probabilité qu’un noeud choisi uniformément parmi tous les noeuds

ait k voisins), il existe un paramètre γ tel que pk ∼ k−γ . Ce résultat a permis l’identification

d’une nouvelle catégorie de réseaux dits ”sans-échelle”, et différencie ces réseaux du graphe clas-

sique aléatoire proposé par Erdős et Rényi dans les années 60, dans lequel la distribution est
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Poisson et donc homogène, dans le sens où le nombre de voisins de chaque noeud fluctue très

peu autour d’une valeur moyenne.

Une question essentielle dans l’étude des réseaux est l’influence de la topologie d’un réseau sur

sa réponse aux facteurs perturbatifs. Par exemple dans de nombreux domaines, il est essentiel

de comprendre et caractériser la robustesse des réseaux, quand on supprime un certain nombre

de noeuds, ou de liens. Un autre exemple consiste à étudier la propagation des épidémies sur les

différents types de réseaux. Les épidémies sur des graphes permettent de modéliser de nombreux

phénomènes dans les réseaux tels que la propagation de virus, de vers, de rumeurs, et aussi les

faillites des agents financiers, pour en citer quelques-un. Les systèmes de particules en interaction

(comme le processus de contact) ont permis de modéliser avec succès de tels phénomènes. Ces

systèmes aléatoires ont deux caractéristiques principales : ils modélisent un grand nombre de

particules sur un graphe, et l’état de chaque particule dépend des états des particules voisines sur

le graphe. Ce genre de systèmes présente généralement une transition de phase entre une phase

active où l’épidémie infecte une large proportion du réseau et une phase inactive où la contagion

reste contenue. Le paramètre de contrôle permettant de changer de phase est la transmissibilité

de l’infection, et on s’intéresse généralement à la détermination de sa valeur critique.

De nouveaux modèles mathématiques, visant à capturer les propriétés des systèmes réels

organisés en réseaux, ont été développés. Ces modèles ont enrichi la théorie des graphes aléatoires

par l’étude mathématique rigoureuse des lois régissant l’évolution de ces systèmes, dans le même

esprit que dans les graphes d’Erdős-Rényi. Les réseaux complexes ont une structure inhomogène,

découlant non seulement du fait que les caractéristiques structurelles des sommets peuvent

s’écarter fortement de la moyenne, mais aussi du fait que les propriétés statistiques peuvent

changer entre les différentes parties du réseau. Des phénomènes critiques comme la transition

de phase induite par l’apparition d’une composante géante ont été bien étudiés sur les graphes

d’Erdős-Rényi. Des progrès récents ont été réalisés sur des graphes aléatoires plus réalistes tels

que les graphe aléatoires avec la distribution des degrés donnée (aussi connu comme le modèle

de configuration) : e.g. l’émergence de la composante géante, l’existence et les propriétés du

k-core, la percolation et les épidémies.

Voici une description rapide du contenu de cette thèse.

Chapitre 1. Réseaux complexes et graphes aléatoires. Dans ce chapitre, nous introduisons

la théorie des graphes aléatoires et les réseaux complexes. Nous rappelons d’abord quelques
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notions et résultats de la théorie des processus de branchement, pertinentes pour prédire les

propriétés des graphes aléatoires. Nous donnons ensuite les résultats connus sur l’émergence

d’une composante géante, k-core, et les distances dans les graphes d’Erdős-Rényi, et finissons le

chapitre par rappeler des résultats connus sur le modéle de configuration.

Chapitre 2. Percolation de premier passage, l’inondation et le diamètre. Dans ce chapitre,

nous considérons l’impact des poids sur les distances dans les graphes aléatoires dilués. Nous

interprétons ces poids comme des retards, et les prenons comme des variables aléatoires exponen-

tielles i.i.d.. Nous analysons le temps d’inondation défini comme le temps minimum nécessaire

pour atteindre tous les noeuds à partir d’un noeud choisi d’une manière uniforme, et le diamètre

correspondant au pire cas pour le temps d’inondations. Sous certaines conditions de régularité

sur la séquence de degrés du graphe aléatoire, nous montrons que ces quantités croissent comme

le logarithme de n, lorsque la taille du graphe n tend vers l’infini. Nous trouvons également la

valeur exacte des préfacteurs. Ce resultat nous permet d’analyser un algorithme de transmis-

sion asynchrone dans les graphes aléatoires réguliers. Nous montrons que la version asynchrone

de l’algorithme est plus performante que sa version synchronisée quand la taille du graphe est

suffisament grande, il atteindra l’ensemble du réseau plus rapidement, même si le dynamique

local est similaire en moyenne. Ce chapitre est fondé sur les articles [4, 7], en collaboration avec

M. Draief et M. Lelarge.

Chapitre 3. Percolation bootstrap, diffusion et cascades. Dans ce chapitre, nous étudions

la diffusion et les cascades dans les graphes aléatoires. Notre modèle de diffusion peut être

considéré comme une variante d’un processus de croissance d’un automate cellulaire : supposons

que chaque site puisse être dans l’un des deux états possibles, inactif ou actif. Les paramètres

du modèle sont deux fonctions données θ : N → N et α : N → [0, 1]. Au début du processus,

chaque noeud v de degré dv devient actif avec une probabilité α(dv) indépendamment des autres

sommets. La présence de sommets actifs déclenche un processus de percolation : si un noeud

v est actif, il reste actif pour toujours. Et s’il est inactif, il deviendra actif à condition qu’au

moins θ(dv) de ses voisins soient actifs. Dans le cas où α(d) = α et θ(d) = θ, pour chaque d ∈ N,

notre modèle de diffusion est équivalent à ce qui est souvent appelé ”percolation bootstrap”.

Notre résultat principal est un théorème qui nous permet de trouver la proportion finale des

sommets actifs dans le cas asymptotique, c’est-à-dire lorsque n→ ∞. Ce chapitre est fondé sur

l’article [1], en collaboration avec M. Draief et M. Lelarge, et l’article [2].
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Chapitre 4. Contagion dans les réseaux financiers. Dans ce chapitre, nous réalisons une anal-

yse asymptotique des cascades de défaut dans les réseaux financiers. En utilisant des techniques

que nous avons développés dans les chapitres précédents,, nous obtenons une expression pour

la taille asymptotique d’une cascade de défaut en fonction des caractéristiques du réseau. Ce

résultat est utilisé pour obtenir un critère pour la résilience d’un réseau financier aux chocs de

petite taille. Nos résultats soulignent le rôle joué par les expositions contagieuses, et montrent

notamment que les noeuds qui sont étroitement liés et sur-exposés sont ceux qui contribuent le

plus à la fragilité du réseau. Ces résultats asymptotiques concordent avec des simulations faites

pour les réseaux dont les tailles sont réalistes, montrant la pertinence de l’étude des réseaux de

taille infinie pour la régulation macro-prudentielle. Ce chapitre est fondé sur les articles [5, 6],

en collaboration avec R. Cont et A. Minca.

Appendice A. Cette annexe a pour but de fournir un rappel aux principaux outils proba-

bilistes dont nous nous servons tout au long de cette thèse.
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Introduction

This section is devoted to the summary of the original contributions of this dissertation. We

start this by fixing the notations and briefly explaining the random graph model that we will

consider through this thesis.

Basic Notations.

Throughout the document, we let R and N denote the set of real and natural numbers, respec-

tively. For nonnegative sequences xn and yn, we describe their relative order of magnitude using

Landau’s o(.) and O(.) notation: We write xn = O(yn) if there exist N ∈ N and C > 0 such that

xn ≤ Cyn for all n ≥ N . Occasionally, we write xn = Ω(yn) to mean that there exists N ≥ 0

and C > 0 such that for all n ≥ N , xn ≥ Cyn. If xn = O(yn) and xn = Ω(yn), then we write

xn = Θ(yn). If xn converges to x as n goes to infinity, then we write xn → x, as n → ∞. Also

xn = o(yn) means xn/yn → 0, as n→ ∞. We write xn ∼ yn when xn/yn → 1 as n→ ∞.

We let P(A) denote the probability of an event A, i.e., a measurable set defined on some

probability space. We usually do not make explicit reference to the probability space since it is

usually clear to which one we are referring. We say that an event A holds almost surely, and we

write a.s., if P(A) = 1. The random variables considered in this document take values in R or

Rd for some d ∈ N. The expected value of a real valued random variable X is denoted by EX or

E[X], its variance by Var[X]. The expected value of X conditional on A is written by E[X|A].

The indicator function of an event A is of particular interest, it is denoted by 11(A) and we have

E11(A) = P(A).

We say that a sequence Xn of random variables
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(i) converges in distribution to a limiting random variable X when

lim
n→∞

P(Xn ≤ x) = P(X ≤ x), (1)

for every x for which F (x) = P (X ≤ x) is continuous. We write this as Xn
d−→ X.

(ii) converges in probability to a limiting random variable X when, for every ϵ > 0,

lim
n→∞

P(|Xn −X| > ϵ) = 0. (2)

We write this as Xn
p−→ X.

(iii) converges almost surely to a limiting random variable X when

P( lim
n→∞

Xn = X) = 1. (3)

We write this as Xn
a.s.→ X.

We consider the asymptotic case when n → ∞ and say that an event holds w.h.p. (with high

probability) if it holds with probability tending to 1 as n→ ∞. Similarly, we use op and Op in a

standard way. For example, if (Xn) is a sequence of random variables, then Xn = Op(1) means

that ”Xn is bounded in probability” and Xn = op(n) means that Xn/n
p→ 0. For notational

simplicity we will sometimes not show the dependency on n explicitly.

Configuration Model.

For n ∈ N, let (di)
n
1 be a sequence of non-negative integers such that

∑n
i=1 di is even. By

means of the configuration model, we define a random multigraph with given degree sequence

(di)
n
1 , denoted by G∗(n, (di)

n
1 ) as follows. To each node i, we associate di labeled half-edges. All

half-edges need to be paired to construct the graph, this is done by randomly matching them.

When a half-edge of a node i is paired with a half-edge of a node j, we interpret this as an edge

between i and j. The graph G∗(n, (di)
n
1 ) obtained following this procedure may not be simple,

i.e., may contain self-loops due to the pairing of two half-edges of i, and multi-edges due to

the existence of more than one pairing between two given nodes. However conditional on the

multigraph G∗(n, (di)
n
1 ) being a simple graph, we obtain a uniformly distributed random graph

with the given degree sequence, which we denote by G(n, (di)
n
1 ).
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For r ∈ N, let u
(n)
k = |{i, di = k}| be the number of vertices of degree k and m(n) be the

total degree defined by

m(n) =

n∑
i=1

di =
∑
k≥0

ku
(n)
k .

From now on, we assume that the sequence (di)
n
1 satisfies the following regularity conditions

analogous to the ones introduced by Molloy and Reed in [128].

Condition 1. For each n, d(n) = (d
(n)
i )n1 is a sequence of non-negative integers such that∑n

i=1 d
(n)
i is even and, for some probability distribution (pr)

∞
r=0 over integers, independent of n,

the following hold:

(i) u
(n)
k /n→ pk for every k ≥ 0 as n→ ∞ ;

(ii) λ :=
∑

k≥0 kpk ∈ (0,∞);

(iii)
∑n

i=1 d
2
i = O(n).

We refer to Chapter 1 for more on this model. Now, we are in position to announce our

main results.

First Passage Percolation, Flooding and Diameter.

Let G = (V,E) be a weighted graph, i.e., to each edge e ∈ E, a non-negative weight we is

assigned. For any a, b ∈ V , a path between a and b is a sequence π = (e1, e2, . . . ek) where

ei = (vi−1, vi) ∈ E and vi ∈ V for i ∈ [1, k], with v0 = a and vk = b. We write ei ∈ π to denote

the fact that the edge ei belongs to the path π. For a, b ∈ V , we define

distw(a, b) = min
π∈Π(a,b)

∑
e∈π

we ,

where the minimum is taken over all paths between a and b in the graph. The weighted diameter

and the weighted flooding time are given by

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) <∞}, (4)

floodw(G) = max{distw(a, b), b ∈ V, distw(a, b) <∞}, (5)
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where in (5) a is chosen uniformly at random in V .

Our main result (in Chapter 2) consist in precise asymptotic expressions for the weighted

diameter and weighted flooding time of sparse random graphs on n vertices with i.i.d. exponen-

tially distributed weights with parameter 1. To explain this, we need to introduce some extra

notations.

We now consider a random graph G(n, (di)
n
1 ), where the degree sequence (di)

n
1 satisfies

Condition 1. Let us define q = {qk}∞k=0 the size-biased probability mass function corresponding

to p, by

qk =
(k + 1)pk+1

λ
, (6)

and define ν to be its mean, i.e.,

ν =

∞∑
k=0

k qk ∈
(

0 ,∞
)
.

We further assume the following additional condition:

Condition 2. (iv) as n→ ∞, νn :=
∑n

i=1 d
(n)
i (d

(n)
i −1)

m(n) → ν ∈ (1,∞);

(v) for some τ > 0, ∆n := maxi∈V di = O(n1/2−τ );

(vi) dmin := min{ k | pk > 0 } is such that for k < dmin; u
(n)
k := |{i, di = k}| = 0, for all n

sufficiently large.

The condition ν > 1 is equivalent to the existence of a giant component in the configuration

model, the size of which is proportional to n (see e.g., [110, 128]). We will assume this in the

rest of this section, so ν > 1.

Let Xq be a Galton-Watson Tree (GWT) with offspring distribution q. Recall that the

extinction probability of the branching process, that we denote by β, is the smallest solution in

[0, 1] of the fixed point equation

β = Gq(β) , (7)

where Gq is the generating function of the distribution q.

In addition, we introduce

β∗ = G′
q(β) =

∞∑
k=1

kqkβ
k−1 . (8)
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Our main theorem in Chapter 2 is the following.

Theorem 1 (Theorem 2.2). Consider a random graph G(n, (di)
n
1 ) with i.i.d. exponential 1

weights on its edges, where the degree sequences (di)
n
1 satisfy Conditions 1 and 2. Then we have

diamw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1),

and

floodw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

1

dmin
11(dmin≥3) +

1

2(1 − q1)
11(dmin=2) +

1

1 − β∗
11(dmin=1).

In the particular case where G is a random r-regular graph with r ≥ 3, we recover a result

first proved in [52] concerning the weighted diameter.

We now consider the Erdős-Rényi random graph, ER(n, λ/n), on n vertices where there is an

edge between two vertices with probability λ/n independently of everything else. We let λ > 1

to have a giant component. Then Conditions 1 and 2 hold a.s. (by conditioning on the vertex

degrees, c.f. see Remark 1.23). In this case we have

qk = e−λλ
k

k!
. (9)

And then ν = λ and β∗ = λ∗ where λ∗ is the solution λ∗ < 1 to

λ∗e
−λ∗ = λe−λ. (10)

Applying Theorem 1 to this case we have :

Theorem 2 (Theorem 2.5). Let λ > 1 and assume ER(n, λ/n) with i.i.d. rate 1 exponential

weights on its edges. Then

diamw(ER(n, λ/n))

log n

p→ 1

λ− 1
+

2

1 − λ∗
, and (11)

floodw(ER(n, λ/n))

log n

p→ 1

λ− 1
+

1

1 − λ∗
. (12)

A lower bound for the weighted diameter in this case was given by Bhamidi, van der Hofstad

and Hooghiemstra in [25]. In particular, the above theorem improves this, and gives the correct

asymptotic.
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Broadcasting in random regular graphs. Theorem 1 allows us to analyze an asynchronous

randomized broadcast algorithm for random regular graphs. In continuous-time, we assume

that each node is endowed with a Poisson process with rate 1 and that at the instants of its

corresponding Poisson process a node wakes up and contacts one of its neighbors uniformly at

random. In Section 2.3, we consider the well-studied push model. In this model, if a node i holds

the message, it passes the message to its randomly chosen neighbor regardless of its state. As

in the case of the standard discrete-time phone call model, we are interested in the performance

of such an information dissemination routine in terms of the time it takes to inform the whole

population. We denote this time by ABT(G) for asynchronous broadcast time

Our results show that the asynchronous version of the algorithm performs better than its

synchronized version: in the large size limit of the graph, it will reach the whole network faster

even if the local dynamics are similar on average.

Theorem 3 (Corollary 2.6). Let G ∼ G(n, r) be a random r-regular graph with n vertices. Then

w.h.p.

ABT(G) = 2

(
r − 1

r − 2

)
log n+ o(log n).

The classical randomized broadcast model was first investigated by Frieze and Grimmett

[76]. Given a graph G = (V,E), initially a piece of information is placed on one of the nodes in

V . Then in each time step, every informed node sends the information to another node, chosen

independently and uniformly at random among its neighbors. The question now is how many

time-steps are needed such that all nodes become informed. Note that this model requires nodes

to be synchronized.

Fountoulakis and Panagtotou in [74] have recently shown that in the case of random regular

graphs, the process completes in
(

1
log(2(1−1/r)) −

1
r log(1−1/r)

)
logn+ o(log n) rounds w.h.p.

Figure 1 shows the comparison between results in [74] and our Theorem 3: in both cases,

the time to broadcast is of the order of log n but the prefactors differ and are given by the two

curves for various values of r. We see that the asynchronous version is always faster than the

synchronized one. We refer to Section 2.3 for more discussions.
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Figure 1: Comparison of the time to broadcast in the synchronized version (dashed) and with

exponential random weights (plain)

Bootstrap Percolation, Diffusion and Cascades.

The diffusion model we consider in this section is a generalization of bootstrap percolation in

an arbitrary graph (modeling a given network). Let G = (V,E) be a connected graph. The

threshold associated to a node i is θ(di), where di is the degree of i and θ : N → N is a given fixed

function. Assume that each node can be in one of two possible states: inactive or active. Let

α : N → [0, 1] be a fixed given function. At time 0, each node i becomes active with probability

α(di) independently of all the other vertices. At time t ∈ N, the state of each node i will be

updated according to a deterministic process: if a node i was active at time t − 1, it remains

active at time t. Otherwise, i will become active if at least θ(di) of its neighbors were active at

time t− 1.

In the case where α(d) = α and θ(d) = θ, for each d ∈ N, our diffusion model is equivalent to

what is called bootstrap percolation. This model has a rich history in statistical physics, mostly

in G = Zd and finite boxes [4]

Let G be a graph with n nodes, i.e., |V | = n. Let A denote the adjacency matrix of G, with

Aij = 1 if i ∼ j, and Aij = 0 otherwise. The state of the network at time t can be described by

the vector (Xt(i))
n
i=1: Xt(i) = 1 if the node i is active at time t and Xt(i) = 0 otherwise. Note

that X0(i) is a Bernoulli random variable with parameter α(di). The evolution of this vector at

time t + 1 follows the following functional equation, i.e., at each time step t + 1, each node v
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applies:

Xt+1(i) = Xt(i) + (1 −Xt(i))11

∑
j

AijXt(j) ≥ θ(di)

 . (13)

From the definition, Xt(i) is non-decreasing. We let

Φ(n)(α, θ, t) := n−1
n∑

j=1

E[Xt(j)],

and Φ(n)(α, θ) := limt→∞ Φ(n)(α, θ, t).

We now present our main result in Chapter 3. Consider a random graph G(n, (di)
n
1 ) where

the degree sequence (di)
n
1 satisfies Condition 1. Let D be a random variable with integer values

and with distribution P(D = r) = pr, r ∈ N. We define the function fα,θ : [0, 1] → R as follows

fα,θ(y) := λy2 − y E
[ (

1 − α(D)
)
D 11 ( Bin(D − 1, 1 − y) < θ(D))

]
, (14)

where Bin(l, p) denotes a binomial variable with parameters l and p

P (Bin(l, p) = r) =

(
l

r

)
pr(1 − p)l−r.

Let y∗ = y∗α,θ be the largest solution to fα,θ(y) = 0, i.e.,

y∗ := sup { y ∈ [0, 1] | fα,θ(y) = 0 }.

Theorem 4 (Theorem 3.2). Consider a random graph G(n, (di)
n
1 ) where the degree sequence

(di)
n
1 satisfies Condition 1. Then we have with high probability (w.h.p.)

1. If y∗ = 0, i.e., if fα,θ(y) > 0 for all y ∈ (0, 1], then w.h.p. Φ(n)(α, θ) = 1 − o(1).

2. If y∗ > 0 and furthermore y∗ is not a local minimum point of fα,θ(y), then w.h.p.

Φ(n)(α, θ) = 1 − E [ (1 − α(D)) 11 ( Bin(D, 1 − y∗) < θ(D)) ] + o(1).

We now look at the diffusion with one initial active node. Let us call the following condition

the cascade condition:

E [D ] < E
[
D(D − 1)11(θ(D)=1)

]
.

The second theorem of Chapter 3 is the following.
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Theorem 5 (Theorem 3.3). Consider a random graph G(n, (di)
n
1 ) where the degree sequence

(di)
n
1 satisfies Condition 1.

• If the cascade condition (defined above) is satisfied, then there exists w.h.p. a single node

v which can trigger a global cascade, i.e., v can activate a strictly positive fraction of the

total population w.h.p.

• If E [D ] > E
[
D(D − 1)11(θ(D)=1)

]
, then for any k = o(n), we have

|C(1, 2, ..., k)| = op(n),

where for W ⊆ V , C(W ) denote the final set of active nodes when we start the diffusion

with initial active nodes W .

We note that in the case where θ(d) = θd, Watts [151] obtained the same condition by a

heuristic argument validated through simulations. Our theorem provides as a very special case

a mathematical proof of his heuristic results. We refer to Chapter 3 for more discussions.

Contagion in Financial Networks.

In Chapter 4, we perform an asymptotic analysis of default cascades in financial networks. Using

analytical methods, we derive an expression for the fraction of defaulted nodes in the limit where

the number of nodes is large, in terms of the empirical distribution of the in- and out-degrees

and the proportion of contagious links in a financial network. This result is used to obtain a

criterion for the resilience of a large network to macro-economic shocks. Given a macroeconomic

stress scenario defined in terms of the magnitude of common shocks across balance sheet, our

criterion yields a minimal capital ratio which guarantees stability of the system in the given

stress scenario.

Interlinkages across balance sheets of financial institutions may be modeled by a weighted

directed graph g = (v, e) on the vertex set v = [1, . . . , n], whose elements represent financial

institutions. Denoting by e(i, j) the exposure (in monetary units) of institution i to institution

j, the interbank assets of i are given by Ai =
∑

j e(i, j), whereas Li =
∑

j e(j, i) represents the

interbank liabilities of i. In addition to these interbank assets and liabilities, a bank may hold

other assets and liabilities (such as deposits). The net worth of the bank, given by its capital
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ci, represents its capacity for absorbing losses before it becomes insolvent. We define the ratio

γi as

ci = γiAi.

We will refer to γi as “capital ratio” although technically it is the ratio of capital to interbank

assets and not total assets. An institution is insolvent if its net worth is negative or zero, in

which case we set γi = 0. The number of an institution’s creditors is called its in-degree

d−(i) = #{j ∈ v | e(j, i) > 0},

while the out-degree of a node i is the number of its debtors

d+(i) = #{j ∈ v | e(i, j) > 0}.

In a network (e, γ), the set of initially insolvent institutions is represented by

D0(e, γ) = {i ∈ v | γi = 0}.

If we denote by Rj the recovery rate for the debt of a market participant j, then j’s default

induces a loss equal to (1−Rj)e(i, j) to its counterparty i. If this loss is greater than i’s capital,

then i defaults. The set of nodes which become insolvent due to their exposures to defaults is

D1(e, γ) = {i ∈ v | γiAi <
∑
j∈D0

(1 −Rj)e(i, j)},

and generally Dr represents the set of nodes defaulting in round r due to exposures to nodes

defaulted in rounds 0, . . . , r − 1.

It is easy to see that the process finishes at most after n− 1 time steps if the network is of size

n, and gives the increasing sequence of default sets

D0(e, γ) ⊆ D1(e, γ) ⊆ · · · ⊆ Dn−1(e, γ).

We assume in what follows that the recovery rate is constant over all nodes and equal to R. The

final fraction of defaults at the end of the cascade process, denoted by αn(e, γ), is a deterministic

function of the exposure matrix and sequence of capital ratios:

αn(e, γ) =
|Dn−1(e, γ)|

n
.
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The financial network (e, γ) is embedded in a sequence of financial networks, indexed by

their size (en, γn). The sequences of in- and out-degrees in these networks, also indexed by n,

are denoted d+
n = {d+n (i)}ni=1 and respectively d−

n = {d−n (i)}ni=1. Their empirical distribution is

given by

µn(j, k) :=
1

n
#{i : d+n (i) = j, d−n (i) = k},

and the total number of links in the network of size n by

mn :=
∑
i

d+n (i) =
∑
i

d−n (i).

We assume that the degree sequence d+
n = {d+n (i)}ni=1 and d−

n = {d−n (i)}ni=1 are sequences

of nonnegative integers satisfying the following regularity conditions analogues to Condition 1.

Condition 3. There exists a probability distribution µ on N2 such that:

1. The empirical proportion of nodes of degree (j, k) tends to µ(j, k):

µn(j, k) → µ(j, k) as n→ ∞;

2. Finite average degree property:

∃λ ∈ (0,∞),
∑
j,k

jµ(j, k) =
∑
j,k

kµ(j, k) =: λ;

3.
∑n

i=1 d
+
n (i) =

∑n
i=1 d

−
n (i);

4.
∑n

i=1(d
+
n (i))2 + (d−n (i))2 = O(n).

The sequences of continuous exposures and capital ratios are mapped into discrete sequences

representing the default threshold for each node. We denote by Σe
i the set of permutations of

node i’s debtors in a network e. For each node i and permutation τ ∈ Σe
i , we define

Θ(i, τ, e) := min{k ≥ 0, γi

d+(i)∑
j=1

e(i, j) <

k∑
j=1

(1 −R)e(i, τ(j))}, (15)

which represents the threshold function: conditional on the order τ in which the counterparties

of i may default, this function determines how many defaults i’s capital buffer can withstand

before i defaults.
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Let us define

pn(j, k, θ) :=
#{(i, τ) | 1 ≤ i ≤ n, τ ∈ Σen

i , d+n (i) = j, d−n (i) = k, Θ(i, τ, en) = θ}
nµn(j, k)j!

.

We further assume the following additional condition:

Condition 4. There exists a function p : N3 → [0, 1] such that for all j, k, θ ∈ N (θ ≤ j)

pn(j, k, θ)
n→∞→ p(j, k, θ).

We say that a link is contagious, if it represents an exposure of a node larger than its capital.

It is easy to see that pn(j, k, 1) represents the proportion of ‘contagious’ links leaving nodes with

degree (j, k). The limit p(j, k, 1) also represents the fraction of nodes with degree (j, k) that

default when one counterparty defaults.

The financial network is modeled under incomplete information. Disclosure of counterparty

identity is not required in our framework. This allows for valuable confidentiality. On the other

hand, we require important information, as the exact composition of balance sheets: the size of

all exposures and the connectivity of each node which determine the crucial characteristics of

the network and its response to external shocks.

Let Gn(en,d
+
n ,d

−
n ) be the set of all weighted directed graphs with degree sequence d+

n ,d
−
n

such that, for any node i, the set of exposures is given by the non-zero elements of line i in

the exposure matrix en. On a probability space (Ω,A,P), we define En as a random network

uniformly distributed on Gn(en,d
+
n ,d

−
n ).

We endow the nodes in En with the capital ratios γn. Then:

∀i = 1 . . . n, {En(i, j), En(i, j) > 0} = {en(i, j), en(i, j) > 0}, (P− a.s.)

#{j ∈ v, En(j, i) > 0} = d+n (j), and #{j ∈ v, En(i, j) > 0} = d−n (i).

The quantity αn(En, γn) represents the size of the cascade generated by the default of

D0(En, γn) = {i, γn(i) = 0},

i.e., fraction of defaults in the network triggered by the default of nodes in D0(En, γn). The

following theorems give the asymptotic behavior of this quantity.
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Theorem 6 (Theorem 4.8). Define the function

I(π) :=
∑
j,k

kµ(j, k)

λ

j∑
θ=0

p(j, k, θ)P(Bin(j, π) ≥ θ), (16)

where Bin(j, π) denotes a binomial variable with parameters j and π.

Consider a sequence of exposure matrices and capital ratios {(en)n≥1, (γn)n≥1} satisfying

Conditions 3 and 4 and the corresponding sequence of random matrices (En)n≥1 defined on

(Ω,A,P) as above. Let π∗ be the smallest fixed point of I in [0, 1], i.e.

π∗ = inf{π ∈ [0, 1] | I(π) = π}.

1. If π∗ = 1, i.e. if I(π) > π for all π ∈ [0, 1), then asymptotically all nodes default during

the cascades

αn(En, γn)
p→ 1.

2. If π∗ < 1 and furthermore π∗ is a stable fixed point of I (I ′(π∗) < 1), then the asymptotic

fraction of defaults

αn(En, γn)
p→
∑
j,k

µ(j, k)

j∑
θ=0

p(j, k, θ)P(Bin(j, π∗) ≥ θ).

We define as the resilience measure the following function of the network’s features, which

takes values in (−∞, 1]:

1 −
∑
j,k

jk

λ
µ(j, k)p(j, k, 1).

The second theorem of Chapter 4 is the following.

Theorem 7 (Corollary 4.10 - Theorem 4.11). Under the assumptions of Theorem 6:

• If the resilience measure is positive, i.e.

1 −
∑
j,k

jk

λ
µ(j, k)p(j, k, 1) > 0, (17)

then for every ϵ > 0, there exists Nϵ and ρϵ such that if the initial fraction of defaults is

smaller than ρϵ, then P(αn(En, γn) ≤ ϵ) > 1 − ϵ for all n ≥ Nϵ.
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• If the resilience measure is negative, i.e.

1 −
∑
j,k

jk

λ
µ(j, k)p(j, k, 1) < 0, (18)

then there exists a connected set Cn of nodes representing a positive fraction of the financial

system, i.e. |Cn|/n
p→ c > 0 such that, with high probability, any node belonging to this

set can trigger the default of all nodes in the set: for any sequence (γn)n≥1 such that

{i, γn(i) = 0} ∩ Cn ̸= ∅,
lim inf

n
αn(En, γn) ≥ c > 0.

We illustrate then, in Chapter 4, how the resilience criterion may be used in a stress test

framework, in which a macroeconomic shock is applied across balance sheets. As the magnitude

of the shock increases, so does the proportion of contagious links, up to a critical threshold

in which the resilience criterion is no longer satisfied and a phase transition ensues: a global

cascade of defaults may then be triggered by the default of a single bank.
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Chapter 1

Random Graphs and Complex

Networks

Abstract. In this chapter, we introduce the theory of random graphs and complex networks.

We first recall some basic notations and results in the theory of branching processes, relevant

for heuristic analysis and predicting the properties of random graphs. We give then the known

results on the emergence of a giant component, k-core, and distances in the Erdős-Rényi random

graphs, and end the chapter by a review of known results on the configuration model.
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1.1 Introduction

Pervasiveness of networks in all aspects of modern life and the associated problems, from viral

attacks on the internet, marketing in social networks or government attempt to contain the

default contagion in the financial market during the onset financial crisis, have spurred new

research to help understand and predict the behavior of such irregular, complex and evolving

structures of interrelated items. Empowered by computational capacity and the availability of

large data-sets on real networks (like the internet, the World Wide Web, transportation networks,

phone call networks, scientific coauthorship networks, protein-protein biological networks, etc.),

the study of complex networks has emerged as a fast growing field, since the appearance at the

end of the twentieth century of two seminal papers, the first one by Watts and Storogatz [152]

on the small world model and the second one by Barabasi and Albert [17] on scale-free networks.

What has been entitled as a new science of networks has seen much of the research carried in

physics but also social sciences, finance and economics, computer science, telecommunications,

natural sciences and mathematics.

Most real networks are very large, from several thousands of nodes in a network of firms to

several billions of nodes in certain biological systems. Due to their complexity, their interrelations

can only be described in statistical terms, and one of the most striking observations is that,

networks different in functions such as social networks and biological networks share common

features. The most striking one concerns the degree distribution, the degree of a node being

the number of incident links. The degree distribution pk, defined as the probability that a node

chosen uniformly at random has degree k, exhibits in most such networks strong heterogeneity

and has a power law tail, i.e., there exists a parameter γ such that pk ∼ k−γ for k larger

than a given constant (e.g., see [2, 7, 132, 140]). This is known as the scale-free property and

differentiates these networks from the classical Erdős and Rényi graphs, in which the distribution

is Poisson and thus homogeneous. A related property is the small world property: the typical

distance between any two nodes is small (one can quote the famous experiment of Milgram that

asserted that the typical chain of acquaintances needed to link two people in the US is typically
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Figure 1.1: Internet topology (taken from http://www.cheswick.com/ches/map/)

equal six). The sparsity of links ( they grow only linearly with the number of vertices) and

clustering effect are other properties that characterize complex networks.

New mathematical models, aiming at capturing the properties of real systems organized as

networks have been developed, built on the observed key characteristics. These models have

enriched the theory of random graphs by the rigorous mathematical study of the laws governing

the evolution of such systems, in the same spirit as in the Erdős-Rényi graph. One crucial

area of study are critical phenomena, see e.g. [5, 28, 53]. Complex networks exhibit strong

inhomogeneity in their structure stemming not only from the fact that structural characteristics

of vertices may strongly deviate from the mean but also from the fact that statistical properties

may change between different parts of the network. Critical phenomena like the phase transition

induced by the emergence of a giant component have been well studied on Erdős-Rényi graphs.

Recent progress has been made on corresponding mathematical studies on more realistic random

graphs such as the random graph with fixed degree distribution (also known as the configuration

model): the emergence of the giant component, the existence and properties of the k-core,

percolation and epidemics.

The remainder of this chapter is organized as follows: we recall some important properties
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of branching processes, relevant for heuristic analysis and predicting the properties of random

graphs. We give then the known results on the emergence of a giant component and distances in

the Erdős-Rényi graph, and end the chapter by a review of known results on the configuration

model.

1.2 Galton-Watson Branching Processes

Many results in the theory of random graphs can be found heuristically by introducing a branch-

ing process that mimics the growth of the cluster. In this section, we recall some basic notations

and results in the theory of branching processes, that we will use as an important tool through-

out the thesis. For more information and proofs of the results, we refer to the books by Athreya

and Ney [13], Harris [87], and Jagers [101].

The branching process model (also known as the Galton-Watson model) was introduced by

Sir Francis Galton in 1873 to represent the genealogical descendants of individuals. This model is

the simplest one describing the evolution in time of a population. Each individual independently

gives birth to a random and identically distributed number of children. We denote the offspring

distribution by {pi}∞i=0, where

pi = P (the individual has i children) . (1.1)

Starting from one individual at generation 0 and denoting by Zn the number of individuals

at generation n, one easily see that

Zn+1 =

Zn∑
i=1

ξn,i, (1.2)

where ξn,i is the number of children of the i-th individual of the n-th generation. By assumption

{ξn,i}n,i∈N is a doubly infinite array of i.i.d. random variables, distributed according to {pk},

that is, for all k ≥ 0, P(ξ = k) = pk. The reproduction generating function used by Watson is

simply defined by

ϕξ(s) := E
[
sξ
]

=
∑
k≥0

pks
k,

for s ∈ [0, 1]. This function is increasing, convex, and concentrates all the information of the

distribution of ξ. In particular, the expected number of children is

λ := E[ξ] =
∑
k≥0

kpk = ϕ′ξ(1).
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1.2.1 Extinction probability and limit theorems

One of the basic results of branching processes is that when λ ≤ 1, the population dies out

with probability one (unless p1 = 1), while if λ > 1, there is a non-zero probability that the

population will not become extinct. Let us denote by pext the extinction probability, i.e., the

probability that after some finite n, Zn = 0. The case where p1 = 1 is uninteresting, so we

always assume p1 < 1.

Theorem 1.1 (Survival vs. extinction). For a branching process with i.i.d. offspring ξ, the

extinction probability pext is the smallest solution in [0, 1] of

s = ϕξ(s). (1.3)

In particular, the following regimes can happen:

(i) Subcritical regime: If E[ξ] < 1, then pext = 1.

(ii) Critical regime: If E[ξ] = 1 (and p1 < 1), then pext = 1.

(iii) Supercritical regime: If E[ξ] > 1, then pext < 1.
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Figure 1.2: The generating functions for a supercritical (left) and subcritical (right) Galton-

Watson processes are shown. In the subcritical case, 1 is the only root of s = ϕξ(s) in [0, 1]. In

the supercritical case, there is pext ∈ [0, 1) such that s = ϕξ(s).
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One important result that will motivate the remainder of this section concerns the asymptotic

size of the population:

Theorem 1.2. Assume that p1 = P(ξ = 1) < 1. Then limn→∞ Zn ∈ {0,∞} almost surely.

If the process does not become extinct, then with probability 1 the size of the population

grows to infinity. We investigate in what follows the nature of this divergence. It is easy to see,

by a simple conditioning argument, that EZn = λn. Intuitively, Zn behaves like λn for large n.

Doob’s limit law [87, p. 13] characterizes more precisely the behavior of Zn.

Theorem 1.3. Let λ be finite. Then Wn = Zn/λ
n represents a martingale with EWn = 1, and

Wn →W almost surely, as n→ ∞, where W is a nonnegative random variable.

The distribution of W is not known. However, one can obtain accurate information on W ,

and the process behaves exactly as one expects (namely EW = 1, P(W = 0) = pext) if and only

if Z’s moment of order x log x is finite. This is made precise in the following theorem, due to

Kesten and Stigum [118], which gives the asymptotic properties of supercritical Galton-Watson

processes.

Theorem 1.4. Let Zn be the number of individuals in the n-th generation of a supercritical

Galton-Watson process with progeny distribution ξ. The following statements are equivalent:

1. E[ξ log ξ] <∞ ;

2. limn→∞ |Wn −W | = 0 ;

3. EW = 1;

4. P(W = 0) = pext.

We have so far described the growth of the process when it does not die out. The next result

treats the case of a supercritical branching process that goes extinct.

For µ > 0, let Poi(µ) denote a Poisson random variable with mean µ, i.e.,

P(Poi(µ) = k) = e−µµk/k!. (1.4)

Theorem 1.5 (Duality principle). A supercritical branching process conditioned to become ex-

tinct is a subcritical branching process. If the original offspring distribution is Poi(λ) with λ > 1,
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then the conditional one is Poi(λ∗), where λ∗ = λ pext can be characterized as the solution λ∗ < 1

to

λ∗e
−λ∗ = λe−λ.

One can give the following geometrical interpretation: a supercritical branching process

conditioned to die out is a branching process with a generating function that is obtained by

taking the graph of ϕξ over [0, pext] and rescaling it in the domain and range [0, 1]. In the next

result, we take the graph of ϕξ over [pext, 1] and rescale to make the domain and range [0, 1].

Theorem 1.6. Consider a supercritical branching process with generating function ϕξ. If we

condition on nonextinction and look only at the individuals that have an infinite line of de-

scent, then Ẑn, the number of individuals in generation n, is a branching process with offspring

distribution ξ̂, where

ϕξ̂(s) =
ϕξ(s+ (1 − pext)s)

1 − pext
.

1.2.2 Continuous-time Markov branching processes

In the discrete Galton-Watson process described in the previous section, each particle dies out

after one unit of time. A natural generalization is to allow these lifetimes to be random variables.

We consider a process {Z(t); t ≥ 0}, where Z(t) is the number of particles at time t. This process

will in general not be Markovian unless the lifetimes are independent, exponentially distributed

random variables.

Definition 1.7. On a probability space (Ω,F,P), a stochastic process {Z(t, ω); t ≥ 0} is called

a continuous time Markov branching process if

(i) its state space is the set of non-negative integers;

(ii) it is a stationary Markov chain with respect to the fields Ft = σ{Z(s, ω); s ≤ t};

(iii) the transition probabilities Pij(t) = P(Zt = j|Z0 = i) satisfy

∞∑
j=0

Pij(t)s
j =

 ∞∑
j=0

P1j(t)s
j

i

, (1.5)

for all i ≥ 0 and |s| ≤ 1.
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Properties (i) and (ii) say that Z(t) is a continuous time Markov process on the integers,

while (iii) characterizes the basic branching property.

We now consider the following Markov branching process. As before, a single ancestor is born

at the origin at time 0. If a given particle is alive at a certain time, its additional life length is

a random variable which is exponentially distributed with parameter 1. Upon death, it leaves k

offsprings with probability pk, k = 0, 1, 2, ... . As usual, each particle acts independently of other

particles and the history of the process. The transition probabilities are determined as solutions

of the Kolmogorov forward and backward equations (see [13], page 103). Let ϕ(s) :=
∑

k≥0 pks
k.

Then we have the following basic result (analogue to Theorem 1.1).

Theorem 1.8. The extinction probability pext is the smallest root in [0, 1] of the equation ϕ(s) =

s.

The asymptotic behavior of Z(t) for large t is very similar to that of the discrete time Galton-

Watson process. It is easy to see that EZ(t) = eλt. This suggests that the population grows at

an exponential rate, and indeed, we have a martingale convergence confirming this Malthusian

law of growth.

Theorem 1.9. The family
{
Z(t)e−λt,Ft; t ≥ 0

}
is a non-negative martingale and hence

lim
t→∞

Z(t)e−λt = W exists a.s. (1.6)

Thanks to the additional structure of the continuous process, more can be said about the

limit of the rescaled process compared to the discrete case. First, we note ψ(u) = E
(
e−uW

)
satisfies the functional equation

ψ(u) =

∫ ∞

o
ϕ
(
ψ
(
ue−λy

))
e−ydy. (1.7)

We settle here the following theorem.

Theorem 1.10 (Harris [86]-Sevastyanov [144]). Consider a supercritical continuous time branch-

ing process with generating function ϕ. Let W = limt→∞ e−λtZ(t), ψ(u) = E
(
e−uW

)
, and ψ−1

be the inverse function of ψ. Assume that
∑

j pjj log j <∞. Then

ψ−1(x) = (1 − x) exp

(∫ x

1

ϕ′(1) − 1

ϕ(s) − s
+

1

1 − s
ds

)
, pext < x ≤ 1 . (1.8)
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1.3 Erdős-Rényi Random Graphs

In this section we introduce the random graph model introduced by Erdős and Rényi in the late

1950’s. The graph consists of n nodes, and each pair of nodes is independently connected with

a fixed probability p. We denote by ER(n, p) the resulting random graph. This model was first

studied in [62]. We refer to [12, 30, 42, 56, 90, 111] for more detailed references of the early

literature on random graphs.

Despite the fact that ER(n, p) is the simplest imaginable model of a random network, a

fascinating phase transition occurs as p increases. Phase transitions are well known in physics

since they occur in various real phenomena, such as magnetism or the conductance properties

of porous materials. Many models have been invented to describe and explain such phase

transitions, and we shall see some examples in this thesis.

1.3.1 Emergence of the giant component

The Erdős-Rényi random graph ER(n, p) has vertex set [n] = {1, 2, ..., n}, and, denoting the

edge between vertices i, j ∈ [n] by (i, j), (i, j) is occupied (or present) with probability p, and

absent or vacant otherwise, independently of other edges. For two vertices i, j ∈ [n], we write

i↔ j when there exists a path of occupied edges connecting i and j. By convention, we always

assume that i↔ i. For v ∈ [n], we denote the connected component containing v (or cluster of

v) by

C(v) := {x ∈ [n] : v ↔ x}. (1.9)

We denote the size of C(v) by |C(v)|. The largest connected component C1 is equal to any

cluster C(v) for which |C(v)| is maximal, so that

|C1| = max{|C(v)|, v ∈ [n]}. (1.10)

Denote by C2 the second largest component.

The following theorem states that in the subcritical regime (λ < 1), all connected components

are of logarithmic size; in the supercritical regime (λ > 1), a giant component appears, whose

size scaled by n converges in probability as n→ ∞ to 1−pext(λ), while other components remain

of logarithmic size. In the critical regime (λ = 1), the largest critical cluster obeys a non-trivial

scaling result, and it is of order n2/3.
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Theorem 1.11 ([29, 63, 107, 138]). Consider the Erdős-Rényi random graph, ER(n, λ/n), on

n vertices where there is an edge between two vertices with probability λ/n independently of

everything else. Depending on the value of λ, the following regimes occur:

1. Subcritical regime: λ < 1. For some constant c depending on λ, the following holds:

lim
n→∞

P (|C1| ≤ c log n) = 1. (1.11)

2. Supercritical regime: λ > 1. Denote by pext(λ) the extinction probability of a Galton-

Watson branching process with Poi(λ) offspring distribution, i.e., the unique root in (0, 1)

of the equation x = exp(−λ(1 − x)). Then for some constant c > 0 depending on λ, and

all δ > 0, one has the following:

P
(∣∣∣∣ |C1|

n
− (1 − pext(λ))

∣∣∣∣ ≤ δ, and |C2| ≤ c log n

)
= 1. (1.12)

3. Critical regime: λ = 1. There exists a constant α > 0 such that for all ω > 1 and n

sufficiently large,

P
(
ω−1n2/3 ≤ |C1| ≤ ωn2/3

)
≥ 1 − α/ω. (1.13)

Furthermore, Bollobás [29] found that the critical behavior extends throughout the regime

where λ = (1 ± ϵ)/n for ϵ = O(n−1/3), known as the critical window (or scaling window). Some

more recent results in this area can be found in [124, 125, 8, 112, 3, 51].

We end this section by stating a central limit theorem in the supercritical regime, i.e., λ > 1,

extending the law of large numbers for the giant component in the last theorem.

Theorem 1.12 ([137]). Consider the Erdős-Rényi random graph, ER(n, λ/n), where λ > 1.

Then,

|C1| − (1 − pext)n√
n

d−→ Z, (1.14)

where Z is a normal random variable with mean 0 and variance σ2(λ) = pext(1−pext)
(1−λpext)2

.

1.3.2 Threshold for connectivity

In the last section we saw that, when the average degree λ of an Erdős-Rényi random graph

is of constant order λ > 1, the graph contains a giant component of size of order n with high
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probability. However, in that regime, this component’s size is strictly less than n, so that the

graph is disconnected. In this section we will investigate the question: How large does λ have

to be, as a function of n, so that the probability that ER(n, λ/n) is connected (i.e., all vertices

in the one component) tends to 1.

Let di be the degree of the vertex i. We have

P (di = 0) = (1 − λ/n)n−1 ,

from which it easily follows that when λ = c log n, we have P (di = 0) ∼ n−c. Thus if c < 1, the

number of isolated vertices In = | {i ∈ [n] : di = 0} | has expectation

EIn = nP (di = 0) ∼ n1−c → ∞.

To show that the actual value of In is close to the mean, we note that if i ̸= j,

P(di = 0, dj = 0) = (1 − λ/n)−1P (di = 0)P (dj = 0) ,

from which it is easy to conclude for c < 1 that

Var(In) ∼ n1−c ∼ EIn.

Using Chebyshev’s inequality it follows that

P (|In − EIn| > ω(n)EIn) ≤ 1

ω(n)2
.

We infer that for c < 1, with high probability there are about n1−c isolated vertices, and

hence the graph is not connected. Showing that the graph is connected is more complicated

because we have to consider all possible ways in which the graph can fail to be connected. We

refer to [30] for the proof of this.

Theorem 1.13. Consider G = ER(n, λ/n) with λ = log n+ c. Then, the following limit holds.

lim
n→∞

P(G is connected ) = e−e−c
. (1.15)

A direct consequence of this theorem is that if the average degree λ asymptotically dominates

log n, i.e., if c is replaced by cn such that cn tends to infinity as n increases, then the graph is

connected with high probability, i.e., with a probability that tends to one as n goes to infinity.
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1.3.3 Emergence of the giant k-core

The k-core of the graph, denoted by Corek, is by definition the maximal induced subgraph

with minimum degree at least k, and in this section, we study the k-core of a random graph

ER(n, λ/n). The k-core of an arbitrary finite graph can be found by removing vertices of degree

less than k, in an arbitrary order, until no such vertices exist. Note that the k-core may be

empty. The question whether a non-empty k-core exists in a random graph has attracted a lot

of attention over the last years. Here we recall the main theorem of [139].

For µ > 0 and j ∈ Z+, let

ψj(µ) := P (Poi(µ) ≥ j) .

Also let

λk := min
µ>0

µ/ψk−1(µ); (1.16)

and for λk > 0, denote by µk(λ), the largest solution to µ/ψk−1(µ) = λ, in (0, 1].

In [139], Pittel, Spencer and Wormald discovered that for k ≥ 3, λ = λk is the threshold for

the appearance of a nonempty k-core in the graph ER(n, λ/n). Their strategy was to analyse

an edge deletion algorithm that finds the k-core in the graph, showing that the corresponding

random process is well approximated by the solution to a system of differential equations.

Theorem 1.14 (Pittel, Spencer and Wormald [139]). For a fixed λ > 0, consider the random

graph ER(n, λ/n). Let k ≥ 2 be fixed and let Corek be the k-core of ER(n, λ/n), and let v(Corek)

and e(Corek) be the number of nodes and edges in the k-core, respectively.

1. If λ < λk and k ≥ 3, then Corek is empty w.h.p. (with high probability) .

2. If λ > λk, then w.h.p. Corek is non-empty, and

v(Corek)

n

p−→ ψk(µk(λ)), (1.17)

e(Corek)

n

p−→ µk(λ)2

2λ
. (1.18)

Note that the first part does not hold for k = 2. Indeed in this case λ2 = 1, and for 0 < λ < 1,

there is a positive limiting probability that the graph contains cycles (as already shown by Erdős

and Rényi [64]). Thus a non-empty 2-core appears with positive probability. Nevertheless, in

this case e(Corek) = Op(1), and v(Corek) = Op(1), so the 2-core is small (see Janson-Luczak

[108]).
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1.3.4 Distances and diameter

Having studied the existence of the giant component for λ > 1, we state now the known results

on the typical distance between two points on the giant component.

Given a graph G = (V,E), the distance dist(a, b) between two nodes a and b in V is the

number of edges in E in the shortest path connecting these two vertices.

Theorem 1.15 (van den Esker, van der Hofstad and Hooghiemstra [65]). Consider the Erdős-

Rényi random graph, ER(n, λ/n), with λ > 1. Pick two vertices a and b independently at random

from the giant cluster. Then

dist(a, b)/ log n→ 1/ log λ (1.19)

in probability, as n goes to infinity.

This result follows from a result in [65]. It is very intuitive to see why such a result should

be true. The branching process approximation of ER(n, λ/n) grows at rate λt, so the average

distance is given by solving λt = n, i.e., t = log n/ log λ.

The diameter of G, denoted by diam(G), is the maximum graph distance between any pair

of connected vertices in V , i.e.,

diam(G) := max{dist(a, b) | a, b ∈ V, dist(a, b) <∞} . (1.20)

Note that the diameter of a graph is interesting from the point of view of applications, e.g.,

when the graph represents a network over which informations need to be transported; its value

provides an upper bound on the time for the informations to go from any location u to any other

location v, provided shortest paths between locations are used.

The main approach for understanding the diameter in Erdős-Rényi random graphs, is to

compare the neighborhoods of a vertex of ER(n, λ/n) with the standard Poisson Galton-Watson

branching process Zλ = (Zk)k≥0; this starts with a single particle in generation 0, and each

particle in generation k, has a Poisson Poi(λ) number of children in the next generation, inde-

pendently of the other particles and of the history.

A particle in the process Zλ survives if it has descendants in all later generations; the

process survives if the initial particle survives. If λ > 1, then the survival probability is the

unique positive solution to 1 − s = e−λs (Theorem 1.1). Since particles in generation 1 survive
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independently of each other, the number of such particles that survive has a Poi(sλ) distribution,

the number of particles that go extinct has a Poi((1 − s)λ) distribution, and these numbers are

independent. It follows that conditioning on the extinction of the process, one obtains again a

Poisson Galton-Watson process Zλ∗ , with the dual parameter

λ∗ = λ(1 − s),

which may also be characterized as the solution λ∗ < 1 to the equation

λ∗e
−λ∗ = λe−λ.

Theorem 1.16 (Riordan and Wormald [141]). Let λ > 1 be fixed, and let λ∗ be the unique

solution to λ∗e
−λ∗ = λe−λ, λ∗ < 1. Then

diam (ER(n, λ/n)) =
log n

log λ
+ 2

log n

log(1/λ∗)
+Op(1). (1.21)

As usual, we say that an event holds with high probability, or w.h.p., if its probability tends

to 1 as n → ∞. The above theorem simply says that, for any K = K(n) → ∞, the diameter

is w.h.p. within K of the sum of the first two terms. We remark that this theorem is a special

case of a result of Fernholz and Ramachandran [69] for random graphs with a given degree

sequence (see Theorem 1.29), and also of a result of Bollobás, Janson and Riordan [32, Section

14.2] for inhomogeneous random graphs with a finite number of vertex types. Earlier, Chung

and Lu [41] also studied diam (ER(n, λ/n)), but their results were not strong enough to give the

correct asymptotic form. Indeed, they conjectured that, under suitable conditions, the diameter

is approximately log n/ log λ, as one might initially expect.

The proof of the above theorem is given in [141]. However, the answer is easy to understand

intuitively: typically, the size of the d-neighbourhood of a vertex (the set of vertices at distance

d) grows by a factor of λ at each step (i.e., as d is increased by one). Starting from two

typical vertices, taking log(
√
n)/ log λ steps from each, the neighborhoods reach size about

√
n;

at around this point, the neighborhoods are likely to overlap, so the typical distance between

vertices is log n/ log λ. The second term comes from exceptional vertices whose neighborhoods

take some time to start expanding, or, equivalently, from the few very longest trees attached

to (typical vertices of) the 2-core of ER(n, λ/n). It is well known that the trees hanging off

the 2-core of ER(n, λ/n) have roughly the distribution of the branching process Zλ∗ . Hence,

some of these trees will have height roughly log n/ log(1/λ∗), and it turns out that the diameter

arises from the distance between the leaves of two trees of (almost) maximal height attached to

vertices in the 2-core at (almost) typical distance.
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1.4 Configuration Model

After having recalled the basic results about the Erdős-Rényi random graphs, in this section,

we present a detailed introduction to the random graphs with given fixed degrees (see e.g.,

[129, 56, 90, 131]), which will serve as our basic random graph model throughout this dissertation.

The model covers a wide range of submodel arising in typical practical applications, like random

regular graphs, ER(n, λ/n), the power law distributed graphs, exponentially distributed graphs,

etc.

So ideally, we are interested in (uniformly chosen) random graphs having a prescribed degree

sequence. But it is difficult to directly examine these random graphs, so instead, we introduce

a model that produces a multigraph with the prescribed degrees, and which, when conditioned

on simplicity of the multigraph, becomes uniform over all simple graphs with the prescribed

degree sequence. This random multigraph is called the configuration model (or ’CM ’). The

configuration model was originally developed by Bender and Canfield [19] and Bollobás [30] as

a mean for generating a random graph with a prescribed sequence of vertex degrees (its earliest

applications were in the study of random regular graphs).

For n ∈ N, let (di)
n
1 be a sequence of non-negative integers such that

∑n
i=1 di is even. By

means of the configuration model, we define a random multigraph with given degree sequence

(di)
n
1 , denoted by G∗(n, (di)

n
1 ) as follows. To each node i, we associate di labeled half-edges. All

half-edges need to be paired to construct the multigraph, this is done by randomly matching

them. When a half-edge of i is paired with a half-edge of j, we interpret this as an edge between

i and j. The graph G∗(n, (di)
n
1 ) obtained following this procedure may not be simple, i.e., may

contain self-loops due to the pairing of two half-edges of i, and multi-edges due to the existence

of more than one pairing between two given nodes. Note that G∗(n, (di)
n
1 ) does not have exactly

the uniform distribution over all multigraphs with the given degree sequence; there is a weight

with a factor 1/j! for every edge of multiplicity j, and a factor 1/2 for every loop, see e.g., [104].

However conditional on the multigraph G∗(n, (di)
n
1 ) being a simple graph, we obtain a uniformly

distributed random graph with the given degree sequence, which we denote by G(n, (di)
n
1 ).

One specific example is when the degrees are all equal, in which case we speak of a random

regular graph [156].

For k ∈ N, let u
(n)
k = |{i : di = k}| be the number of vertices of degree k, and m(n) be the
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total degree defined by

m(n) :=

n∑
i=1

di =
∑
k≥0

ku
(n)
k .

From now on, we will assume that we are given a sequence (di)
n
1 = (d

(n)
i )n1 for each n ∈ N

satisfying the following regularity conditions analogous to the ones introduced by Molloy and

Reed in [128]. For notational simplicity we will usually not show the dependence on n explicitly.

Condition 1.17. For each n, d(n) = (d
(n)
i )n1 is a sequence of non-negative integers such that∑n

i=1 di is even and, for some probability distribution (pr)
∞
r=0 over integers, independent of n,

the following hold.

(i) The degree density condition: u
(n)
k /n→ pk for every k as n→ ∞.

(ii) Finite expectation property: λ :=
∑

k≥0 kpk ∈ (0,∞).

(iii) Second moment property:
∑n

i=1 d
2
i = O(n).

Let Dn be the random variable defined as the degree of a random (uniformly chosen) vertex

in G∗(n, (di)
n
1 ). Note in particular that

P(Dn = k) = u
(n)
k /n. (1.22)

Also remark that

EDn = n−1
n∑

i=1

d
(n)
i = m(n)/n. (1.23)

Further, let D be the random variable with the distribution P(D = k) = pk.

Then Property (i) can be written as

Dn
d−→ D. (1.24)

In other words, D describes the asymptotic distribution of the degree of a random vertex in

G(n, (di)
n
1 ). Furthermore, Property (ii) is simply λ = ED ∈ (0,∞), and Property (iii) can be

written as

ED2
n = O(1). (1.25)
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Remark 1.18. In particular, (1.25) implies that the random variables Dn are uniformly in-

tegrable, and thus, Condition 1.17 (i), in the form given in (1.24), implies that EDn → ED,

i.e.,

2m(n)

n
= n−1

n∑
i=1

d
(n)
i → λ, (1.26)

as n→ ∞ (see e.g., [84, Theorems 5.4.2 and 5.5.9] ).

Theorem 1.19 (Janson [104]). Consider a random graph G∗(n, (di)
n
1 ) where the degree sequence

(di)
n
1 satisfies Condition 1.17. Then

lim inf
n→∞

P (G∗(n, (di)
n
1 ) is simple ) > 0.

As a corollary we obtain

Corollary 1.20. Let d(n) = (di)
n
1 be a given fixed degree sequence satisfying Condition 1.17.

Then, an event En occurs with high probability for G(n, (di)
n
1 ) when it occurs with high probability

for G∗(n, (di)
n
1 ).

Corollary 1.20 allows us to prove a property for uniform graphs with a given degree sequence

by proving it for the configuration model with that degree sequence.

As in the case of Erdős-Rényi graphs, the growth of clusters can be approximated in the

early stages by a branching process.

If we start with a given vertex x, then the number of neighbors (the first generation in

the branching process) has distribution pj . This is not true for the second generation. A first

generation vertex with degree k is k times as likely to be chosen as one with degree 1, so the

distribution of the number of children of a first generation vertex is for k ≥ 1 given by

qk−1 =
kpk
λ
. (1.27)

The k− 1 on the left-hand side comes from the fact that we used up one edge connecting to the

vertex.

Example 1.21. Consider the Poisson distribution pk = e−λλk/k!, which is the asymptotic

degree distribution for ER(n, λ/n). In this case we have

qk−1 = e−λkλ
k

λk!
= e−λ λk−1

(k − 1)!
,
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and q is again Poisson with mean λ. Conversely if p = q, we have pk = pk−1λ/k. Iterating this

gives pk = p0λ
k/k!, so pk is Poisson with mean λ.

Let ν denote

ν :=
∞∑
k=0

kqk =
E[D(D − 1)]

E[D]
. (1.28)

Define

νn :=
E[Dn(Dn − 1)]

E[Dn]
=

∑n
i=1 d

(n)
i (d

(n)
i − 1)

m(n)
. (1.29)

Note that by Condition 1.17(iii), we have νn = O(1). This implies that ν < ∞, since by

Fatou’s lemma

ν ≤ lim inf
n→∞

νn.

We will sometimes need an extra assumption.

Condition 1.22. As n→ ∞, νn → ν. (Equivalently, E[D2
n] → E[D2].)

This is clearly stronger than Condition 1.17 (iii). Assuming Condition 1.17, it is by (1.24)

equivalent to uniform integrability of D2
n. In particular this condition holds if supn ED2+ϵ

n <∞
for some ϵ > 0.

Remark 1.23. Our results in this thesis, can be also applied to some other random graphs

models by conditioning on the vertex degrees. (This will work when the random graph condi-

tioned on the degree sequence has a uniform distribution over all possibilities.) For example,

for the Erdős-Rényi random graph ER(n, pn), where every edge is present with probability pn

with npn → λ ∈ (0,∞), the Condition 1.17 (and the other conditions that we will consider

through this thesis) holds in probability. Note that now (d
(n)
i ) are random vertex degrees. As

usual let u
(n)
k be the (random) number of vertices with degree k. Indeed for ER(n, pn) with

npn → λ ∈ (0,∞), we have (see for example [109, Section 8])

(i) u
(n)
k

p−→ pk, for every k ≥ 0 as n→ ∞;

(ii) for every A ≥ 1,
∑

k u
(n)
k Ak =

∑n
i=1A

d
(n)
i = Op(n).
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Note that in this case, this holds with pk = e−λλk/k!. By replacing the random graphs ER(n, pn)

by other random graphs G(n, pn) with the same distribution, we can assume that the random

graphs are defined on a common probability space and that Properties (i) and (ii) above hold

almost surely. It will be then easy to conclude that Conditions 1.17 and 1.22 hold a.s. In

particular, Property (ii) which is for every A ≥ 1, E[ADn ] =
∑

k
u
(n)
k
n Ak = O(1), implies uniform

integrability of Dn (and all the powers Ds
n for fixed s; this can be for example obtained by

observing that for ϵ > 0, EDs(1+ϵ)
n ≤ EADn for some large enough A = A(s, ϵ), and that

EADn = O(1) by assumption). Thus,

∑n
i=1 d

(n)
i

n
= E[Dn] → E[D] =

∑
k

kpk = λ;

and λ ∈ (0,∞). Similarly, all higher moments converge, and Conditions 1.17 and 1.22 hold.

From the Skorokhod coupling theorem [113, Theorem 4.30] applied to the random sequences(
u
(n)
k

)∞
k=0

, we may assume that the limit u
(n)
k → pk in Property (i) above holds a.s., for every

k ≥ 1. We now ”derandomize” Property (ii) above. By Property (ii), for every j ≥ 1 and

k ≥ 1, we may choose Ck,j increasing in j such that P(
∑

i k
d
(n)
i > Ck,jn) < 2−k/j. Now let

Ej := {
∑

i k
d
(n)
i ≤ Ck,jn for every k ≥ 1}, and E0 = ∅. Note that P(Ej) > 1 − 1/j for j ≥ 1.

Thus, condition on the event Ej , Property (ii) holds uniformly. We apply the Skorokhod coupling

theorem to
(
u
(n)
k

)∞
k=0

conditioned on Ej\Ej−1 for every j ≥ 1 such that P(Ej\Ej−1) > 0; this

shows that we can assume u
(n)
k

a.s.−→ pk for every k on Ej\Ej−1, and we only have to combine these

pieces for j ≥ 1. We refer to [109, Section 8], where this is done in more details for Erdős-Rényi

random graphs.

The configuration model with i.i.d. degrees. We may also consider a model of random

graphs given by a configuration model where the degrees are given by i.i.d. random variables

having the distribution of a random variable D (in contrast to our earlier model with determin-

istic degree sequences). To explain this in more details, let us fix an integer n. Consider now an

i.i.d. sequence D1, D2, . . . , Dn. We will assume that mn =
∑n

j=1Dj is even. If mn is odd, then

we add a half-edge to the n-th node, so that Dn is increased by one. This single half-edge will

make hardly any difference in what follows, and we will ignore this effect (e.g., see [90]). We now

specify the degree distribution. The probability mass function and the distribution function of
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the nodal degree D are denoted by

pj := P(D = j), j = 0, 1, 2, . . . , and, F (x) =

⌊x⌋∑
j=0

pj , (1.30)

where ⌊x⌋ is the largest integer smaller than or equal to x. To construct the graph, we have n

separate nodes and incident to node j, we have Dj half-edges. All half-edges need to be paired

to construct the multigraph, this is done by randomly matching them. When a half-edge of i

is paired with a half-edge of j, we interpret this as an edge between i and j. We denote the

resulting random multigraph by G(n, F ). Note that here we have two sources of randomness:

random degrees and random matching to construct the (multi-)graph.

Unless explicitly stated, in what follows we will be only working in the model G(n, (di)
n
1 );

however, in few occasions we make reference to the model G(n, F ) for the existing results in

the literature.

1.4.1 The giant component

The question of the existence of a giant component in G(n, (di)
n
1 ) was answered by Molloy and

Reed [129], who showed that a giant component exists w.h.p. if and only if (in the notation

above) E[D(D − 2)] > 0.

Before we state the results, we start by introducing some notation. Let Gp(x) be the prob-

ability generating function of D, i.e.,

Gp(x) := ExD =
∞∑
k=0

pkx
k, (1.31)

and define further

h(x) := xG′
p(x) =

∞∑
k=1

kpkx
k, and (1.32)

H(x) := λx2 − h(x). (1.33)

Note that h(0) = 0 and h(1) = λ, and thus, H(0) = H(1) = 0. Note also that

H ′(1) = 2λ−
∞∑
k=1

k2pk = −ED(D − 2). (1.34)
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We recall that v(G) and e(G) denote the numbers of vertices and edges in the graph G,

respectively; further, we let vk(G) be the number of vertices of degree k.

Theorem 1.24 (Molloy, Reed [129] - Janson, Luczak [110]). Consider a random graph G(n, (di)
n
1 )

where the degree sequence (di)
n
1 satisfies Condition 1.17. Assume that p0 + p2 < 1. Let C1 and

C2 be the largest and second largest components of G(n, (di)
n
1 ).

(i) If E[D(D− 2)] =
∑

k k(k− 2)pk > 0, then there is a unique ξ ∈ (0, 1) such that H(ξ) = 0,

or equivalently G′
p(ξ) = λξ, and

v(C1)/n
p−→ 1 −Gp(ξ) > 0, (1.35)

vk(C1)/n
p−→ pk(1 − ξk), for every k ≥ 0, (1.36)

e(C1)/n
p−→ 1

2
λ(1 − ξ2), (1.37)

while v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If E[D(D − 2)] =
∑

k k(k − 2)pk ≤ 0, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

The same result holds for G∗(n, (di)
n
1 ).

In the usual, more informal, language, the theorem shows that G(n, (di)
n
1 ) has a giant com-

ponent if and only if E[D(D − 2)] > 0, i.e., ν > 1.

The case p0 + p2 = 1 is much more exceptional. Note that in this case, H(x) = 0 for all x.

Quite different behaviours are possible in this case (e.g., see [110]).

(We refer to [114, 75, 88], for the results concerning the behavior of the largest component

near the critical point ν = 1.)

Let Gq(x) be the probability generating function of {qk}∞k=0, i.e.,

Gq(x) :=

∞∑
k=0

qkx
k, (1.38)

and let β denote the extinction probability of the branching process with distribution {qk}∞k=0,

so that β is the smallest positive solution of the equation

β = Gq(β). (1.39)
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Set

η :=

∞∑
k=1

pkβ
k. (1.40)

It is easy to see that η is the extinction probability of a branching process where the probability

mass function of the first generation Z1 is given by {pk}∞k=1, while the distribution of all further

generation is given by {qk}∞k=0. We call such a process a delayed branching process.

We next state a duality principle for the configuration model. First define the dual probability

distribution of {pk}∞k=1 as

p̃k =
pk
η
βk. (1.41)

Theorem 1.25. The structure of the configuration model with degree sequence (d
(n)
i )n1 , formed

by deleting the largest component C1 of G(n, (di)
n
1 ), is the same as that of the configuration model

with ñ = n− |C1| vertices and with degree sequence (d̃
(n)
i )ñ1 , which are such that

lim
n→∞

|{i : 1 ≤ i ≤ ñ, d̃
(n)
i = k}|/n = p̃k,

and p̃k is defined in (1.41).

We refer to [129] for a proof of this. We now heuristically explain the form of the dual

asymptotic degree distribution in the above theorem. Indeed the definition of {p̃k}∞k=1 can again

be explained with help of a branching process. The {pk} sequence belongs to a branching process

which will not become extinct with positive probability, which implies that the random graph

with that degree sequence has a giant component. Thus, the removal of the giant component

alters the accompanying branching process. As a result, with Dv being the degree of the vertex

v, conditioned on v not belonging to the giant component, we would expect that

p̃k = P(Dv = k|v not in the giant component) ∼ P ({Z1 = k} ∩ {extinction})

P(extinction)
,

where Z1 is the law of the first generation of the delayed branching process. The children in the

first generation generate Z1 independent branching processes, which all have to become extinct,

and this happens with probability βZ1 . The probability of extinction in the delayed branching

process equals η, so that

p̃k =
pk
η
βk.
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1.4.2 The k-core

The existence of a large k-core in a random graph with a given degree sequence has been

studied by several authors, see for example Cain and Wormald[38], Cooper [46], Fernholz and

Ramachandran [68], and Janson and Luczak [108].

Let k ≥ 2 be a fixed integer, and Core
(n)
k be the k-core of the graph G(n, (di)

n
1 ). We shall

consider thinning of the vertex degrees in G∗(n, (di)
n
1 ). Let D be the random variable with

the distribution P(D = r) = pr, which is the asymptotic distribution of the vertex degrees in

G∗(n, (di)
n
1 ). For 0 ≤ p ≤ 1, we let Dp be the thinning of D obtained by taking D points and

then randomly and independently keeping each of them with probability p. For integers l ≥ 0

and 0 ≤ r ≤ l, let πlr denote the binomial probabilities

πlr(p) = P (Bin(l, p) = r) =

(
l

r

)
pr(1 − p)l−r. (1.42)

Hence we have

P (Dp = r) =
∞∑
l=r

plπlr(p). (1.43)

We further define the functions

h(p) := E [Dp11(Dp ≥ k)] =

∞∑
r=k

∞∑
l=r

rplπlr(p), (1.44)

h1(p) := P (Dp ≥ k) =

∞∑
r=k

∞∑
l=r

plπlr(p). (1.45)

Note that Dp is stochastically increasing in p, and thus, both h and h1 are increasing in p,

with h(0) = h1(0) = 0. Note further that h(1) =
∑∞

r=k rpr ≤ λ, and h1(1) =
∑∞

r=k pr ≤ 1, with

strict inequalities unless pr = 0 for all r = 1, ..., k − 1 or r = 0, 1, ..., k − 1, respectively.

Theorem 1.26 (Fernholz, Ramachandran [68] - Janson, Luczak [108]). Consider a random

graph G(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies Condition 1.17. Let k ≥ 2 be fixed,

and let Core
(n)
k be the k-core of G(n, (di)

n
1 ). Let p̂ be the largest p ≤ 1 such that λp2 = h(p).

(i) If p̂ = 0, i.e., if λp2 > h(p) for all p ∈ (0, 1], then Core
(n)
k has o(n) vertices and o(n) edges

w.h.p.
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(ii) If p̂ > 0, and further suppose that p̂ is not a local maximum point of the function h(p)−λp2.
Then

v
(

Core
(n)
k

)
/n

p−→ h1(p̂) > 0, (1.46)

vj

(
Core

(n)
k

)
/n

p−→ P (Dp̂ = j) =
∞∑
l=j

plπlj(p̂), j ≥ k, (1.47)

e
(

Core
(n)
k

)
/n

p−→ h(p̂)/2 = λp̂2/2. (1.48)

The same result holds for G∗(n, (di)
n
1 ).

1.4.3 Distances and diameter

In this section, we give an overview of the results on the average graph distance and diameter

in the configuration model. We assume that ν > 1, defined by (1.28), which is equivalent to the

existence of a giant component in the configuration model (see Section 1.4.1).

In the the configuration model with i.i.d. degrees G(n, F ), where F is the distribution

function of the integer-valued random variable D (the degree random variable), the following

asymptotic for the distance between two uniformly chosen vertices a and b has been proved in

[94], under the following extra assumption. Suppose that for some τ > 3, there exists a constant

c > 0 such that

1 − F (x) ≤ cx−τ+1, for all x ≥ 1, (1.49)

and that ν > 1, where we recall that ν is given by

ν =
E[D(D − 1)]

E[D]
. (1.50)

(Note that Assumption 1.49 implies that D has finite variance and so ν <∞. Also, the condition

ν > 1 is to ensure the existence of a giant component.)

Theorem 1.27 (van der Hofstad, Hooghiemstra and van Mieghem [94]). Assume that Condi-

tion (1.49) is satisfied with τ > 3, and let ν > 1. Let a and b be two uniformly chosen vertices

in the giant component of the graph G(n, F ), and so dist(a, b) <∞. Then

dist(a, b)

logn

p−→ 1

log ν
.
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(We refer to [95] and [66], for the results concerning the typical distance in the case τ ∈ (2, 3)

and τ ∈ (1, 2), respectively.)

We now explain the result concerning the diameter of G(n, (di)
n
1 ).

Recall first the following basic result concerning Galton-Watson processes. Let Xq be a Galton-

Watson tree with offspring distribution {qk}∞k=0. Then the extinction probability of the branch-

ing process, β, is the smallest solution of the fixed point equation

β = Gq(β).

We further define

β∗ := G′
q(β) =

∞∑
k=1

kqkβ
k−1. (1.51)

Remark 1.28. Let X+
q ⊆ Xq be the set of particles of Xq that survive (have descendants in all

future generations). Note that in particular X+
q contains the root of the branching process with

probability 1 − β, and is empty otherwise. Denote by D the random variable with distribution

P(D = r) = qr, and let Dp be the thinning of D obtained by taking D points and then randomly

and independently keeping each of them with probability p (see Equation 1.43). Then the number

of surviving children has the distribution D1−β. Let D+ denote the offspring distribution in X+
q .

Furthermore, conditioning on a particular particle being in X+
q means exactly the same thing

as conditioning on at least one of its children surviving. Then we have

P(D+ = 1) = P(D1−β = 1|D1−β ≥ 1)

=

∑
r qrβ(1 − β)r−1

β

= G′
q(β) = β∗.

Hence the probability that X+
q (k), the particles in generation k in X+

q , consists of a single

particle, given that the hole process survives, is exactly βk∗ . This event corresponds to the

branching process remaining thin for k generations.

The following asymptotic for the diameter of Gn, has been proved in [69]. This generalizes

the result of Bollobás and Fernandez de la Vega [31] for the diameter of d-regular random graphs.
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Theorem 1.29 (Fernholz and Ramachandran [69]). Consider a random graph Gn ∼ G(n, (di)
n
1 )

where the degree sequence (di)
n
1 satisfies Conditions 1.17 and 1.22. Furthermore, assume that

u
(n)
1 = 0 when p1 = 0, and that u

(n)
2 = 0 when p2 = 0. We have

diam(Gn)

log n

p−→ 1

log ν
+

1

| log q1|
11(p1 = 0, p2 > 0) +

2

| log β∗|
11(p1 > 0).

1.4.4 Site and bond percolation

Two important cases of disease diffusion on random graphs have been studied in depth. The

first case is when all individuals are susceptible but the probability of an infected node to

transmit the disease to a susceptible node is π. In the second case, only a fraction π of nodes

is susceptible, but the disease is so contagious that if an individual gets infected all of their

susceptible neighbors will become infected. The first model is known as bond percolation, where

edges are deleted with probability 1 − π. The second is known as site percolation, and instead

of the edges, it is the nodes that are randomly removed.

During the last decade, percolation theory has brought new understanding and techniques to

a broad range of topics in physics, materials science, complex networks as well as in epidemiology

(see e.g., [33, 82, 91, 116, 146]). Percolation is easy to study in Erdős-Rényi random graphs, since

the result of retaining a fraction π of the edges or sites is another Erdős-Rényi random graph.

Using the branching process heuristic, percolation occurs (there will be a giant component)

if and only if the mean of the associated branching process is > 1. This observation is well

known in the epidemic literature, where it is phrased “the epidemic will spread if the number of

secondary infections caused by an infected individual is > 1”.

We will consider percolation of the random graph given by the configuration model. We first

generate a random graph G∗(n, (di)
n
1 ) and then percolate it. Fountoulakis [72] and Janson [103]

show that both for site and bond percolation in G∗(n, (di)
n
1 ), if one denotes by ñ the number

of vertices in the resulting random graph, and then condition on its degree sequence (d̃i)
n
1 , then

this obtained graph has the distribution of G(ñ, (d̃i)
ñ
1 ), the random graph with this prescribed

degree sequence. This shows that one needs only to calculate the distributions of the degree

sequence (d̃i)
ñ
1 , and finally apply known results to G(ñ, (d̃i)

ñ
1 ). Our presentation below mainly

follows the original work of Janson [103].
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Site percolation.

Given any graph G = (V,E) and a probability π ∈ [0, 1], we define the random graph Gπ,v, the

graph obtained from G by randomly deleting each vertex (together with all incident edges) with

probability 1 − π, independently of all other vertices.

Thus π denotes the probability to be kept in the percolation model. When, as in our case,

the original graph G itself is random, it is further assumed that we first sample G and then

proceed as above, conditionally on G.

The cases π = 0, 1 are trivial: G1,v = G, while G0,v = ∅, the empty graph with no vertices

and no edges. We will thus consider 0 < π < 1.

We consider the generalized site percolation model in which the probability depends on the

degree of the vertex. Thus, if π = (πd)∞0 is a given sequence of probabilities πd ∈ [0, 1], let Gπ,v

be the random graph obtained by deleting vertices independently of each other, with vertex

v ∈ G deleted with probability 1 − πdv where dv is the degree of v in G.

Instead of deleting a vertex, if its degree is d, we first split it into d new vertices of degree

one; the new vertices are colored in red (e.g., see[103]). Then we remove all red vertices. We note

that the (random) splitting changes the number of vertices, but not the number of half-edges.

Moreover, given the set of splittings, there is a one-to-one correspondence between configurations

before and after the splittings, and thus, if we condition on the new degree sequence, the graph

after splittings is still described by the configuration model. Furthermore, by symmetry, when

removing the red vertices, all vertices of degree one are equivalent, so one simply has to remove

the right number of vertices of degree one, chosen uniformly at random. We can thus obtain

G∗
π,v(n, (di)

n
1 ) as follows:

• with probability 1 − π(di), each vertex i is replaced by di new vertices of degree one. Let

(d̃i)
ñ
1 be the resulting random degree sequence, of length ñ (the number of vertices after

splittings), and let n+ be the number of new vertices.

• Construct the random graph G(ñ, (d̃i)
ñ
1 ).

• Finish by deleting n+ randomly chosen vertices of degree one.

Let nj be the number of vertices of degree j in (di)
n
1 , and ñj = {i ≤ ñ : d̃i = j} be the
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number of vertices of degree j after the splittings. Thus:

∞∑
j=0

ñj = ñ. (1.52)

We let noj be the number of vertices of degree j that are not split. Then

noj = Bin(nj , πj) (independent of each other), (1.53)

n+ =

∞∑
j=0

j(nj − noj), (1.54)

ñj = noj , j ̸= 1, (1.55)

ñ1 = no1 + n+. (1.56)

We consider a random graph G∗(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies Condi-

tion 1.17. Then by the law of large numbers and Condition 1.17 we have

noj = njπj + op(n) = πjpjn+ op(n), (1.57)

n+ =
∞∑
j=0

j(1 − πj)pjn+ op(n), (1.58)

ñj = πjpjn+ op(n), j ̸= 1, (1.59)

ñ1 = (π1p1 +

∞∑
j=0

j(1 − πj)pj)n+ op(n), (1.60)

ñ =

∞∑
j=0

(πj + j(1 − π − j)) pjn+ op(n). (1.61)

We can rewrite the above equations as

ñ

n

p−→ ξ :=
∞∑
j=0

(πj + j(1 − πj)) pj , (1.62)

ñj
ñ

p−→ p̃j := ξ−1πjpj , j ̸= 1, (1.63)

ñ1
ñ

p−→ p̃1 := ξ−1(π1p1 +

∞∑
j=0

j(1 − πj)pj) (1.64)

We also have λ̃ :=
∑

j jp̃j = ξ−1λ, and it is easy to see that Condition 1.17 holds, in

probability, for the random degree sequence ((d̃i)
ñ
1 ). By Skorokhod coupling theorem [113,

Theorem 4.30], we can then state that Condition 1.17 a.s. holds for (d̃i)
ñ
1 .
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Let Gp̃ be the probability generating function of {p̃k}∞k=0. We obtain

ξGp̃(x) =

∞∑
j=0

ξp̃jx
j =

∞∑
j=0

πjpjx
j +

∞∑
j=0

j(1 − πj)pjx = λx+

∞∑
j=0

πjpj(x
j − jx). (1.65)

In particular, if all πj = π,

ξGp̃(x) = πGp(x) + (1 − π)λx, (1.66)

where now ξ = π + (1 − π)λ.

This leads to the following result for the asymptotic size of C1.

Theorem 1.30 (Janson [103]). Consider the site percolation model G∗
π,v(n, (di)

n
1 ) where the

degree sequence (di)
n
1 satisfies Condition 1.17, and that π = (πd)∞0 with πd ∈ [0, 1]; suppose

further that there exists j ≥ 1 such that pj > 0 and πj < 1. Let C1 and C2 be the largest and the

second largest components of G∗
π,v(n, (di)

n
1 ), respectively.

(i) If
∑∞

j=0 j(j − 1)πjpj > λ, then there is a unique ξ = ξv(π) ∈ (0, 1) such that

∞∑
j=1

jπjpj(1 − ξj−1) = λ(1 − ξ), (1.67)

and we have

v(C1)/n
p−→ χv(π) :=

∞∑
j=1

πjpj(1 − ξj) > 0, (1.68)

e(C1)/n
p−→ µv(π) = (1 − ξ)

∞∑
j=1

jπjpj −
1

2
λ(1 − ξ)2, (1.69)

while v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If
∑∞

j=0 j(j − 1)πjpj ≤ λ, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

As a corollary, in the standard case when all πd = π, this leads to a simple criterion for

the existence of the giant component (which has also been shown by Britton, Janson, Martin-

Löf [36], and Fountoulakis [72] by different methods).

Corollary 1.31 (Britton, Janson, Martin-Löf [36] - Fountoulakis [72]). Suppose that Condition

1.17 holds and 0 < π < 1. Then there exists w.h.p. a giant component in G∗
π,v(n, (di)

n
1 ) if and

only if

π > πc :=
ED

ED(D − 1)
. (1.70)



46 Chapter 1. Random Graphs and Complex Networks

Bond percolation.

Given any graph G = (V,E) and a probability π ∈ [0, 1], we define the random graph Gπ,e the

graph obtained from G by randomly deleting each edge with probability 1 − π, independently

of all other edges. Thus, π denotes the probability for each edge to be kept in the percolation

model. The same ideas as in the case of site percolation may be applied.

Consider a random graph G∗(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies Condition

1.17. For any half-edge, with probability 1 −
√
π, independently of all other half-edges, we

transfer it to a new red vertex of degree one. This does not change the number of half-edges,

and there is a one-to-one correspondence between configurations before and after the transferals.

We finish by removing all red vertices and their incident edges. Since an edge consists of two

half-edges, and every half edge is kept with probability
√
π, the resulting graph is equivalent to

the bond percolation model G∗
π,e(n, (di)

n
1 ) where edges are kept with probability π. This gives

the following algorithm:

• For each vertex i, replace its degree di by an independent random degree d̃i = Bin(di,
√
π).

• Add n+ :=
∑n

i=1(di − d̃i) new nodes with degree one to the sequence (d̃i)
n
1 , and let d̃π,e

be the resulting degree sequence and ñ = n+ n+ its length.

• Construct the random graph G∗(n, d̃π,e).

• Finish by deleting n+ randomly chosen vertices of degree one.

Let ñj = {i ≤ ñ : d̃i = j} be the number of vertices of degree j after the transferals,

and ñjl be the number of vertices that had degree l before the transferals and j after. Hence

ñj =
∑∞

l=j ñjl for j ̸= 1 and ñ1 =
∑∞

l=1 ñ1l + n+. A vertex of degree l will have after the

transferals a degree with the binomial distribution Bin(l,
√
π), and thus, the probability that it

will become a vertex of degree j is the binomial probability πlj(
√
π).

Then by independence of transferals at different vertices, and by the law of large numbers

(using Condition 1.17), we have

ñjl = πlj(
√
π)pln+ op(n). (1.71)

Furthermore, the number n+ of new vertices equals the number of transferals, and thus, has
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the binomial distribution Bin
(
m(n), 1 −

√
π
)
. By analogy with the site percolation, we have

n+
n

p−→ (1 −
√
π)λ, (1.72)

ñ

n

p−→ ξ := 1 + (1 −
√
π)λ, (1.73)

ñj
ñ

p−→ p̃j := ξ−1
∞∑
l=j

πlj(
√
π)pl, j ̸= 1, (1.74)

ñj
ñ

p−→ p̃1 := ξ−1(

∞∑
l=1

πl1(
√
π)pl + (1 −

√
π)λ). (1.75)

Again it is easy to see that Condition 1.17 a.s. holds for (d̃i)
ñ
1 , and Gp̃, the probability

generating function of {p̃k}∞k=0, satisfy

ξGp̃(x) = Gp(1 −
√
π +

√
πx) + (1 −

√
π)λx. (1.76)

This leads to the following result for the asymptotic size of C1.

Theorem 1.32 (Britton, Janson, Martin-Löf [36] - Fountoulakis [72] - Janson [103]). Sup-

pose that Condition 1.17 holds, and 0 < π < 1. Let C1 and C2 be the largest and the second

largest components of G∗
π,e(n, (di)

n
1 ), respectively. Then there exists w.h.p. a giant component

in G∗
π,e(n, (di)

n
1 ), if and only if

π > πc :=
ED

ED(D − 1)
. (1.77)

(i) If π > πc, then there is a unique ξ = ξe(π) ∈ (0, 1), such that

√
πG′

p(1 −
√
π +

√
πx) + (1 −

√
π)λ = λξ, (1.78)

and then

v(C1)/n
p−→ χe(π) := 1 −Gp(1 −

√
π +

√
πξ) > 0, (1.79)

e(C1)/n
p−→ µe(π) =

√
π(1 − ξ)λ− 1

2
λ(1 − ξ)2, (1.80)

while v(C2)/n
p−→ 0, and e(C2)/n

p−→ 0.

(ii) If π ≤ πc, then v(C1)/n
p−→ 0, and e(C1)/n

p−→ 0.

We notice that the same criterion holds for the existence of a giant component for both site

and bond percolation.
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1.4.5 Random directed graphs with given vertex in- and out-degrees

We end this introductory chapter by considering a model of random directed graph constructed

by the directed analogue of the configuration model. This model is indeed useful in real world

applications, since many networks, and their interesting properties, are usually modeled in

directed graph (in contrast to the undirected case), see for example [1, 6, 37, 89] and Chapter 4.

An example of such a graph is the World-Wide Web (WWW), which is directed since every

hyperlink between two pages goes in only one direction. However, the directed configuration

model has not been considered in as much as details as the undirected case, and deserves more

investigation. Our presentation below mainly follows the original work of Cooper and Frieze [47],

all the definitions and results are from that paper (modified to be conform with our previous

notations).

Let d+
n = {d+n (i)}ni=1, and d−

n = {d−n (i)}ni=1 be two sequences of non-negative integers such

that
∑n

i=1 d
+
n (i) =

∑n
i=1 d

−
n (i). The configuration model (CM) on n vertices with degree se-

quences d+
n and d−

n is constructed as follows:

We associate to each node i, two sets: W+
n (i) representing its out-going half-edges, and

W−
n (i) representing its in-coming half-edges, with |W+

n (i)| = d+n (i), and |W−
n (i)| = d−n (i). Let

W+
n =

∪
iW

+
n (i), and W−

n =
∪

iW
−
n (i). A configuration is a matching of W+

n with W−
n .

To each configuration we assign a graph. When an out-going half-edge of node i is matched

with an in-coming half-edge of node j, a directed edge from i to j appears in the graph. The

configuration model is the probability space in which all configurations, as defined above, have

equal probability. In other words, we choose the configuration at random, uniformly over all

possible configurations. We denote the resulted random digraph with G∗(n,d+
n ,d

−
n ).

It is quite easy to see that, conditional on the resulting multigraph being a simple graph, we

obtain a uniformly distributed random digraph with the given degree sequence, which we denote

by G(n,d+
n ,d

−
n ).

We denote by mn the total number of links

mn :=

n∑
i=1

d+n (i) =

n∑
i=1

d−n (i),

and we introduce the empirical distribution of the degrees as

µn(j, k) :=
1

n
#{i : d+n (i) = j, d−n (i) = k}.
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We let λn := mn/n, and

νn :=
1

λn

∑
j,k

jkµn(j, k). (1.81)

We say that the degree sequences {d+
n } and {d−

n } are proper if they satisfy the following

regularity conditions.

Condition 1.33. For each n ∈ N, d+
n = {(d+n (i))ni=1} and d−

n = {(d−n (i))ni=1} are sequences of

nonnegative integers with
∑n

i=1 d
+
n (i) =

∑n
i=1 d

−
n (i), and such that, for some probability distri-

bution µ(j, k), independent of n:

(i) The empirical proportion µn(j, k) of vertices of degree (j, k) tends to µ(j, k): µn(j, k) →
µ(j, k) as n→ ∞;

(ii) As n→ ∞; λn → λ ∈ (0,∞), and νn → ν ∈ (0,∞); where

λ :=
∑
j,k

jµ(j, k) =
∑
j,k

kµ(j, k), and

ν :=
∑
j,k

jkµ(j, k)/λ.

(iii) The second moment property:
∑

j,k j
2µn(j, k) = O(1),

∑
j,k k

2µn(j, k) = O(1);

(iv) ∆n := maxi∈V (d+n (i), d−n (i)) ≤ n1/12/ log n;

(v) ρn := max
(∑

i,j
i2jµn(i,j)

λn
,
∑

i,j
j2iµn(i,j)

λn

)
= o(∆n), if ∆n → ∞.

A directed graph is called strongly connected if there is a path from each vertex in the

graph to every other vertex. The strongly connected components of a directed graph G are its

maximal strongly connected subgraphs. The strong connectivity for spaces of sparse random

directed graphs with prescribed degree sequence has been studied by Cooper and Frieze in [47].

Here, we summarize some of their results by following closely the presentation given in [47].

Consider the random graph G(n,d+
n ,d

−
n ) with the proper degree sequences, i.e., satisfying

Condition 1.33. For a fixed vertex a ∈ Vn = [1, n], the fan-out of a, denoted by R+
n (a), is the set

of vertices b ∈ Vn (including a) reachable from a by a directed path. Similarly, the fan-in of a,

denoted by R−
n (a) is the set of vertices which can reach a, i.e., b ∈ R−

n (a) if and only if, there is

a directed path from b to a.
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Let us fix a small constant ϵ > 0, and a large constant C > 0. We will say that a node a has

a large fan-out if |R+
n (a)| > ϵn, and that a has a large fan-in if |R−

n (a)| > ϵn. We will say that a

has a small fan-out if |R+
n (a)| < C∆2

n log n, and that a has a small fan-in if |R−
n (a)| < C∆2

n log n.

Let L+
n denote the set of vertices with a large fan-out and L+

n the set of vertices with a large

fan-in in the random graph G(n,d+
n ,d

−
n ).

We will first give an intuitive description of the model and then state the main result of [47].

As in the case of non directed graphs, the growth of clusters can be approximated in the early

stages by a branching process.

Let

µ+k :=
1

λ

∑
j

jµ(j, k), and µ−j :=
1

λ

∑
k

kµ(j, k). (1.82)

Indeed µ+ is the distribution of the out-degree of the terminal vertex of a randomly chosen

arc. Similarly µ− is the distribution of the in-degree of the initial vertex of a randomly chosen

arc. We infer ν may be written as

ν =
∑
k

kµ+k =
∑
j

jµ−j .

Let X+ be the independent branching process with a single initial node in which the proba-

bility distribution of the number of descendants of a node is µ+. Let η+ the probability that X+

continues indefinitely. Thus, 1 − η+, the extinction probability of X+, is given by the smallest

positive solution of x =
∑

k µ
+
k x

k (e.g., see Theorem 1.1) and satisfies

1 − η+ =
∑
k

µ+k (1 − η+)k. (1.83)

If ν < 1 then the smallest positive solution of the above fixed point equation is one (i.e., η+ = 0),

whereas if ν > 1 there is a unique solution with η+ ∈ (0, 1).

If the root vertex Ø has out-degree k then by doing a breadth first search from Ø, we see

that the arcs of a small R+(Ø) will be approximately the union of k independent copies of

the branching process X+. Thus a root vertex of out-degree k has probability (1 − η+)k of a

finite progeny. Thus, the probability that a randomly chosen vertex will have a small fan-out is

approximately 1 − π+, where

1 − π+ =
∑
j,k

µ(j, k)(1 − η+)k. (1.84)
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We should therefore expect that (as n→ ∞)

|L+
n | ≈ π+n.

Similarly, we expect that

|L−
n | ≈ π−n,

where

1 − π− =
∑
j,k

µ(j, k)(1 − η−)k, (1.85)

and 1 − η− be the smallest positive value satisfying

1 − η− =
∑
j

µ−j (1 − η−)j . (1.86)

If ν < 1 then η+ = η− = 0, and hence π+ = π− = 0. This suggests that ν < 1 implies that

L+
n = L−

n = ∅.

For the number of vertices in a large fan-out note that: If a has a large fan-out and b has a

large fan-in then it is very likely that there will be an arc directed from the fan-out of a to the

fan-in of b which of course implies that b would be in the fan-out of a. Conversely, if b has a

small fan-in then this is unlikely. Thus we expect that when R+
n (a) is large, then L−

n ⊆ R+
n (a)

and |R+
n (a)\L−

n | = o(n), and so

|R+
n (a)| ≈ π−n.

Similarly, we expect that when R−
n (a) is large, then L+

n ⊆ R−
n (a) and |R−

n (a)\L−
n | = o(n), and

so

|R−
n (a)| ≈ π+n.

Thus, we expect that w.h.p. L+
n

∩
L−
n is contained in a strongly connected component

(denoted by Sn). Indeed since any vertex in L+
n

∩
L−
n must have a large fan-in and a large

fan-out, then w.h.p. L+
n

∩
L−
n induces a maximal strongly connected. The size of this strong

component is approximately (π+ + π− + ψ − 1)n, where

ψ :=
∑
j,k

µ(j, k)(1 − η−)j(1 − η+)k. (1.87)
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This can be explained as follows: Choose a random vertex. It has probability µ(j, k) of having

in-degree j and out-degree k. Then the expression (1 − η−)j(1 − η+)k is an estimate of the

probability that all of the i+ j associated branching processes become extinct. Thus, n(1 − ψ)

is a good estimate of L+
n

∪
L−
n .

The above giant strongly connected component will be unique. Every other strong compo-

nent will be of size at most C∆2
n log n w.h.p. since every vertex not in Sn either has a small

fan-out or a small fan-in.

Theorem 1.34 (Cooper and Frieze [47]). Consider the random directed graph G(n,d+
n ,d

−
n ),

where the degree sequence satisfies Condition 1.33, i.e., the degree sequences are proper. Let the

parameters π+, π−, ψ be defined as above.

(i) If ν < 1, then w.h.p. L+
n = L−

n = ∅.

(ii) If ν > 1, then there is a unique giant strongly connected component, with vertex set Sn =

L+
n

∩
L−
n , and we have

|Sn|
n

−→ π+ + π− + ψ − 1, (1.88)

as n→ ∞.



Chapter 2

First Passage Percolation, Flooding,

and Diameter

Abstract. In this chapter, we study the impact of the edge weights on distances in diluted

random graphs. We interpret these weights as delays, and take them as i.i.d exponential random

variables. We analyze the edge flooding time defined as the minimum time needed to reach all

nodes from one uniformly chosen node, and the edge diameter corresponding to the worst case

edge flooding time. Under some regularity conditions on the degree sequence of the random

graph, we show that these quantities grow as the logarithm of n, when the size of the graph n

tends to infinity. We also derive the exact value for the prefactors.

These allow us to analyze an asynchronous randomized broadcast algorithm for random

regular graphs. Our results show that the asynchronous version of the algorithm performs

better than its synchronized version: in the large size limit of the graph, it will reach the whole

network faster even if the local dynamics are similar on average.

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Broadcasting in Random Regular Graphs . . . . . . . . . . . . . . . 62

2.4 Branching Process Approximation . . . . . . . . . . . . . . . . . . . . 64

2.5 Structure of the Augmented 2-Core . . . . . . . . . . . . . . . . . . . 67

2.6 First Passage Percolation in G∗(n, (di)
n
1 ) . . . . . . . . . . . . . . . . . 69



54 Chapter 2. First Passage Percolation, Flooding, and Diameter

2.6.1 The exploration process . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6.2 Coupling the forward-degrees sequence d̂a(i) . . . . . . . . . . . . . . . 76

2.7 Proof of the Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.7.1 Proof of Proposition 2.13 and Proposition 2.14 . . . . . . . . . . . . . . 93

2.8 Proof of the Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.8.1 Proof of Proposition 2.26 . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.9 Proof of Corollary 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.1 Introduction

In this chapter, we study the impact of the introduction of edge weights on the typical distances in

a random graph and, in particular, on its diameter. Such weights can be thought of as economic

costs, congestion delays, or carrying capabilities that can be encountered in real networks such as

transportation systems and communication networks [126, Chapter 16]. Our main result consists

of a precise asymptotic expression for the (edge) diameter of sparse random graphs on n vertices

(under some standard regularity conditions) when the edge weights are i.i.d. exponential random

variables of rate one.

The analysis of the asymptotics of typical distances in edge weighted graphs has received

much interest by the statistical physics community in the context of first passage percolation

problems. First-passage percolation (FPP) describes the dynamics of a fluid spreading within a

random medium. This model has been mainly studied on lattices motivated by its subadditive

property and its link to a number of other stochastic processes, see [83, 117, 85] for a more

detailed discussion. First passage percolation with exponential weights has received substantial

attention (see [21, 92, 93, 94, 25, 24, 102]), in particular on the complete graph, and, more

recently, also on random graphs.

Driven by the distributed nature of modern network architectures, there has been intense

research to devise algorithms to ensure effective network computation. Of particular interest

is the problem of global node outreach, whereby some major event happening in one part of

the network has to be communicated to all other nodes. In this context, gossip protocols

have been identified as simple, efficient and robust mechanisms for disseminating and retrieving

information for various network topologies. These mechanisms rely on simple periodic local

operations between neighboring nodes [135].
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Flooding corresponds to the most commonly used such process. A source node that first

records the event notifies all the nodes within its reach. Subsequently, each of these neighbors

forwards information to all of its neighbors and so on. If the underlying network is connected,

such information will eventually reach all the nodes. The performance of this procedure can be

evaluated in terms of the time it takes to complete. This in particular depends on the underlying

network topology, namely, the existence of short paths between different vertices of the network.

In practice, one may imagine that besides the network topology, there are other parameters that

should be taken into account, such as, for example, the communication delays between nodes

due to congestion. In this context, the spread of the information in the network can be thought

of as a fluid penetrating the network reminiscent of the problem of first-passage percolation in a

random medium. In this chapter, we will consider an asynchronous model in which each edge of

the network is equipped with a random delay modeled by an exponential random variable with

mean one.

One of the main motivations of our work comes from peer-to-peer networks. In particular,

to motivate our random graph model, we recall that the most relevant properties of peer-to-peer

networks are connectivity, small average degree, and approximate regularity of the degrees of the

vertices. The random graph model considered in this chapter has these properties, and covers the

classical G(n, r) model, which is the random graph model in which a graph is drawn uniformly at

random from the set of n-vertex r-regular graphs, where r is a constant not depending on n. For

this model of networks, we consider the push model for disseminating information. In this model,

initially one of the nodes obtains some piece of information. Then every node which already has

that information informs one other node chosen among its neighbors. The classical model goes

iteratively and all nodes have the same clock. In each successive round, the nodes having the

information choose independently and uniformly at random the neighbor they transmit to. In

this chapter, we analyze an asynchronous randomized broadcast algorithm. Namely, nodes are

not anymore assumed to be synchronized, so that each node has an independent Poisson clock.

A node receiving the information will transmit it to a random neighbor at each tick of its own

clock. When the graph of neighbors is a random r-regular graph, we show that the asynchronous

version of the algorithm performs better than its synchronized version (see Section 2.3). To the

best of our knowledge, our work is the first to study this model in an asynchronous version.

From a more theoretical point of view, our work contributes to the general theory of random

graphs by providing new results for the weighted diameter of sparse random graphs. In [102],

Janson considered the special case of the complete graph with fairly general i.i.d. weights on
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edges, including the exponential distribution with parameter one. It is shown that, when n goes

to infinity, the asymptotic distance for two given points is log n/n, that the maximum distance

if one point is fixed and the other varies is 2 log n/n, and the maximum distance over all pairs

of points (i.e., the weighted diameter) is 3 log n/n. He also derived asymptotic results for the

corresponding number of hops or hopcount (the number of edges on the paths with the smallest

weight). More recently, a number of papers provide a detailed analysis of the scaling behavior

of the joint distribution of the first passage percolation and the corresponding hopcount for the

complete graph, e.g., [98, 21]. In particular, Bhamadi derives in [21], limiting distributions for

the first passage percolation on both the complete graph and dense Erdős-Rényi random graphs

with exponential and uniform i.i.d. weights on edges. This extends previous results by van der

Hofstad et al. [93] exploring the link between the flooding time and first-passage percolation for

both of these graphs with exponential edge-weights.

More closely related to the present work, Bhamidi et al. [24] study first passage percolation

on random graphs with finite average degree, minimum degree greater than two and exponential

weights, and derive explicit distributional asymptotic for the total weight of the shortest-weight

path between two uniformly chosen vertices in the network. We compare their results to ours in

the next section. The proofs will show that the analysis made in [24] is not sufficient to obtain

results for the diameter. Indeed, we need to use large deviation techniques to control all the

vertices and not only the uniformly chosen ones.

The remainder of the chapter is organized as follows. In the next section, we explain the

model under consideration, introduce our notations, and state our main result together with

applications to classical random graph models, namely, random regular graphs and Erdős-Rényi

random graphs. Assuming these results, in Section 2.3, we restrict ourselves to the important

class of random regular graphs and analyze a model for asynchronous randomized broadcast.

We also compare in this section our results with the synchronized version. We then describe in

Section 2.4 how to heuristically derive our main results using known properties of continuous-

time Markov branching processes. This section is not technically required for the proof and is

not written in a rigorous way. It is included to give some intuition for the proof of our main

theorem which appears in the subsequent four sections. We prove the upper bound and the

lower bound separately in Section 2.7 and Section 2.8, respectively.
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2.2 Results

Let G = (V,E) be a graph. Recall that for two vertices a and b ∈ V , a path between a and b

is a sequence π = (e1, e2, . . . ek) where ei = {vi−1, vi} ∈ E and vi ∈ V for i ∈ [k], with v0 = a

and vk = b. We write e ∈ π if the edge e ∈ E belongs to the path π, i.e., if e = ei for an i ∈ [k].

Recall that the distance between two nodes a and b in V , denoted by dist(a, b), is the number

of edges in E in the shortest path connecting these two vertices. The diameter of G, denoted

by diam(G), is the maximum graph distance between any pair of connected vertices in V , i.e.

diam(G) = max{dist(a, b), a, b ∈ V, dist(a, b) <∞} .

For a graph G with vertex set V , the flooding time is defined by:

flood(G) = max{dist(a, b), b ∈ V, dist(a, b) <∞} ,

where a is chosen uniformly at random in V . By an abuse of the notation, we also use flood(G)

to denote the expectation of the random variable flood(G) over the choice of a ∈ V .

A weighted graph (G,w) is the data of a graph G = (V,E) and a collection of weights we

associated to each edge e ∈ E. We suppose that all the edge weights are non-negative. The

weighted diameter and the flooding time of a weighted graph
(
G = (V,E), w = {we}e∈E

)
are

defined similarly: For a, b ∈ V , the weighted distance between a and b is given by

distw(a, b) = min
π∈Π(a,b)

∑
e∈π

we ,

where the minimum is taken over all the paths between a and b in the graph. The weighted

diameter is given by

diamw(G) = max{distw(a, b), a, b ∈ V, distw(a, b) <∞} ,

while the weighted flooding time is

floodw(G) = max{distw(a, b), b ∈ V, distw(a, b) <∞} ,

where a is chosen uniformly at random in V .

From now on, we will consider a random graph G(n, (di)
n
1 ), where the degree sequence (di)

n
1

satisfies Conditions 1.17 and 1.22 (of Chapter 1). We further assume the following two additional
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conditions on the maximum and the minimum degree in the random graph G(n, (di)
n
1 ). The

first one is a slightly stronger condition than ”the second moment property” in Condition 1.17.

The second one merely says that the min-degree is well-defined at finite level.

Condition 2.1. (iv) For some τ > 0, ∆n := maxi∈V di = O(n1/2−τ );

(v) The minimum degree dmin := min { k | pk > 0 } is indeed the minimum degree for all n

sufficiently large: For all k < dmin, there is no i ≤ n with di = k provided that n is large

enough, i.e., u
(n)
k = 0.

We recall that the size-biased probability mass function q = {qk}∞k=0 corresponding to p =

{pk}∞k=0, is given by (c.f. Chapter 1)

qk =
(k + 1)pk+1

λ
, (2.1)

and its mean is denoted by ν, i.e., ν :=
∑∞

k=0 kqk.

The condition ν > 1 is equivalent to the existence of a giant component in the configuration

model, the size of which is proportional to n (see e.g. Theorem 1.24). We will assume that ν > 1

in the rest of the chapter.

Since isolated vertices do not matter and can be removed from the graph, without loss of

generality, let us also assume u
(n)
0 = 0 too and consider thus the case dmin ≥ 1 in the rest of the

chapter.

As for the analysis of the diameter of the random graphs, e.g., see Section 1.4.3, we need

to introduce notations relevant to the branching process arising from the BFS (the (standard)

breadth-first search) exploration of the graph. Let Gp(z) and Gq(z) be the probability generating

functions of {pk}∞k=0 and {qk}∞k=0, respectively,

Gp(z) =
∞∑
k=0

pkz
k , Gq(z) =

∞∑
k=0

qkz
k . (2.2)

Let Xq be a Galton-Watson Tree (GWT) with offspring distribution q. The extinction

probability of the branching process, that we denote by β, is the smallest solution in [0, 1] of the

fixed point equation x = Gq(x), e.g., see Section 1.4.3. In addition, define β∗ = G′
q(β).

We can now announce our main theorem.
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Theorem 2.2. Consider a random graph G(n, (di)
n
1 ) with i.i.d. rate one exponential weights

on its edges. Suppose that the degree sequences (di)
n
1 satisfy Conditions 1.17, 1.22, and 2.1. We

have

diamw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1),

and

floodw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

1

dmin
11(dmin≥3) +

1

2(1 − q1)
11(dmin=2) +

1

1 − β∗
11(dmin=1).

This result is obviously consistent with the FPP asymptotic [24], where the typical weighted

distance on random graphs with finite average degree is studied. In fact, the authors derive

the following explicit distributional asymptotic for the minimum weight, distw, between two

uniformly chosen vertices in the network, as well as for the hopcount (the number of edges in

the shortest path connecting these two nodes).

Theorem 2.3 (Bhamidi, van der Hofstad and Hooghiemstra [24]). Consider the configuration

model G(n, F ) with i.i.d. degrees with common distribution function F of a random variable D

(the degree random variable). Assume that F is non-degenerate, in the sense that it satisfies

F (x) = 0 for x < 2 (so dmin ≥ 2), and that there exist c > 0 and τ > 3 such that

1 − F (x) ≤ cx−(τ−1), x ≥ 0.

Let a, b be two uniformly chosen vertices in this graph. There exists a random variable V such

that

distw(a, b) − log n

ν − 1

d−→ V, (2.3)

and the hopcount Hn between a and b satisfies the CLT

Hn(a, b) − α log n√
α log n

d−→ Z, (2.4)

where Z has a standard normal distribution, and α = ν
ν−1 ∈ (1,∞)

(We refer to [24] and [23], for the results concerning the typical weighted distance and

hopcount in the case τ ∈ (2, 3) and τ ∈ (1, 2), respectively.)
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The appearance of the common factor logn
ν−1 in the above results is quite easy to understand

at a heuristic level. Indeed, if one explores the neighborhood of a given vertex consisting of all

vertices at (weighted) distance less than t, then this exploration process behaves like a continuous

time Markov branching process (e.g., see Section 1.2.2 for a precise definition) which is known

to grow exponentially fast like e(ν−1)t. In particular, at time logn
2(ν−1) , it reaches a size of the order

√
n. This means that if one considers two such exploration processes started separately from a

and b, by that time the two processes should intersect with large probability. This explains why

the typical weighted distance is of the order logn
ν−1 . But of course, if one is interested in finding

the diameter, one needs a more refined argument to control the behavior of all the vertices with

respect to the exploration process. We give a more precise statement of the above heuristic in

Section 2.4, deducing our main theorem at a heuristic level. When considering the weighted

flooding time, we consider a case where one exploration process is started from a typical vertex

whereas the other starting point is chosen in order to get a bad scenario in the sense that the

exploration process started from this vertex grows slowly. Indeed, the bad scenario corresponds

to a starting point having degree dmin. This event gives the additional contribution of(
1

dmin
11(dmin≥3) +

1

2(1 − q1)
11(dmin=2) +

1

1 − β∗
11(dmin=1)

)
log n (2.5)

to the typical distance logn
ν−1 . We refer to Section 2.8 for a formal treatment of this argument.

Of course, to compute the weighted diameter, one has to consider a case where both starting

points correspond to bad scenarios, obtaining then the total additional contribution of(
2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1)

)
log n.

We see that if one is interested in passing the information between two typical vertices, this

task can be achieved in time of the order logn
ν−1 , and there is a price (in time) given by (2.5) to

pay if one wishes to pass the information to everyone from a typical vertex and another price

(in time), given by (2.5), to pay if one wishes to pass the information to everyone from a vertex

in a worst case scenario.

We now instantiate our main theorem for some graphs of interest, namely random regular

graphs, and sparse Erdős-Rényi random graphs.

Random regular graphs
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Let r ≥ 3 be a fixed integer, and let G ∼ G(n, r) be a random r-regular graph with n vertices.

The diameter of random regular graphs with exponential weights was studied in [52]. As a

corollary of Theorem 2.2, we can recover their result, namely

Corollary 2.4. Fix r ≥ 3, and let G ∼ G(n, r) be a random r-regular graph with n vertices and

i.i.d. rate 1 exponential random variables on its edges. We have w.h.p.

diamw(G)

log n

p−→ 1

r − 2
+

2

r
, and (2.6)

floodw(G)

log n

p−→ 1

r − 2
+

1

r
. (2.7)

This result allows us to analyze an asynchronous randomized broadcast algorithm for random

regular graphs in Section 2.3

Erdős-Rényi random graphs

Consider the Erdős-Rényi random graph ER(n, λ/n) on n vertices where each possible edge is

chosen independently at random with probability λ/n. We assume λ > 1 to ensure the existence

of a giant component with high probability. In this case we have

qk = e−λλ
k

k!
. (2.8)

The Conditions 1.17, 1.22 and 2.1 both hold a.s. (by conditioning on the vertex degrees, c.f.,

Remark 1.23), and we have ν = λ and β∗ = λ∗ where λ∗ is the solution λ∗ < 1 to the equation

λ∗e
−λ∗ = λe−λ.

Applying Theorem 2.2 to this case, we obtain

Theorem 2.5. Let λ > 1 be a real number, and consdier ER(n, λ/n) with i.i.d. rate one

exponential weights on its edges. Then

diamw(ER(n, λ/n))

log n

p→ 1

λ− 1
+

2

1 − λ∗
, and (2.9)

floodw(ER(n, λ/n))

log n

p−→ 1

λ− 1
+

1

1 − λ∗
. (2.10)
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A lower bound for the weighted diameter in this case was given by Bhamidi, van der Hofstad

and Hooghiemstra in [25]. Our theorem above improves their bound, and gives the correct

asymptotic. It is worth mentioning that in [25], the authors derive a result similar to Theorem

2.3, i.e., they are able to remove the condition dmin ≥ 2 in Theorem 2.3 in the specific case of

Erdős-Rényi random graphs.

2.3 Broadcasting in Random Regular Graphs

In this section we elaborate on another aspect of our result. By comparing our main Theorem

2.2 with Theorem 1.29 (in Chapter 1) in the case of random regular graphs, we see that the

weighted flooding time (or diameter) is actually smaller than the graph distance flooding time (or

diameter). With previous discussion, the heuristic explanation of this phenomenon is as follows.

The random weights allow to introduce a non-zero variance that will result in a faster growth

of the branching process (approximating the exploration process) compared to the constant

weights. Indeed, even though the weights have an average of one, the weights with small values

allow the branching process to grow faster than the case where all the weights are equal to

one. Of course the variability of the weights has also a drawback when one looks at the worst

case scenario which corresponds to the factors logn
dmin

, in the case dmin ≥ 3. However in the case

of random regular graphs, the advantages of variance exceeds its drawback, and the weighted

flooding time is smaller than the graph-distance flooding time. Note that this will not be always

true in the general case, e.g., when ν is much larger than dmin. We now concentrate on one

important practical implications of this phenomenon.

We consider the asynchronous analogue of the standard phone call model [136]. In continuous-

time, we assume that each node is endowed with a Poisson process with rate one, and that at the

instants of its corresponding Poisson process, a node wakes up and contacts one of its neighbors

uniformly at random. We consider the well-studied push model. In this model, if a node i holds

the message, it passes the message to its randomly chosen neighbor regardless of its state. Note

that this may yield an unnecessary transmission (if the receiver had already the message or the

transmitter does not hold the message). As in the case of the standard discrete-time phone call

model, we are interested in the performance of such an information dissemination routine in

terms of the time it takes to inform the whole population. We denote this time by ABT(G) for

Asynchronous Broadcast Time.
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We restrict ourselves to r-regular graphs, i.e., graphs where each node has degree r ≥ 3, so

that pr = 1 in Condition 1.17. As shown below, the dynamic evolution of informed nodes corre-

sponds to the flooding time with i.i.d. weights on edges distributed according to an exponential

distribution with mean r. The symmetry of the graph is crucial to get this property, and this is

the reason why we require G to be an r-regular graph. Our Theorem 2.2 allows us to analyze

the asynchronous broadcast algorithm for these graphs, and we get the following corollary.

Corollary 2.6. Let G ∼ G(n, r) be a random r-regular graph with n vertices. Then w.h.p.

ABT(G) = 2

(
r − 1

r − 2

)
log n+ o(log n).

A proof of this corollary is given in Section 2.9.

The classical randomized broadcast model was first investigated by Frieze and Grimmett

[76]. Given a graph G = (V,E), initially a piece of information is placed on one of the nodes

in V . Then in each time step, every informed node sends the information to another node,

chosen independently and uniformly at random among its neighbors. The question now is how

many time-steps are needed such that all nodes become informed. Note that this model requires

nodes to be synchronized. It was shown by Frieze and Grimmett [76] and Pittel [136] that

for the complete graph Kn the number of steps needed to inform the whole population scales

as log2 n + log n + o(log n) with high probability. Fountoulakis et al. [73] proved that in the

case of Erdős-Rényi random graphs G(n, pn), if the average degree, npn, is slightly larger than

log n, then the broadcast time essentially coincides with the broadcast time on the complete

graph. For any r-regular graphs it has been shown in [58] that this algorithm requires at least(
1

log(2−1/r) −
1

r log(1−1/r)

)
log n + o(log n) rounds to inform all nodes of the graph, w.h.p. (the

randomness comes here from the choice of the neighbor to which the information is pushed).

Fountoulakis and Panagtotou in [74] have recently shown that in the case of random regular

graphs, the process completes in
(

1
log(2(1−1/r)) −

1
r log(1−1/r)

)
logn+ o(log n) rounds w.h.p.

Note that if instead of independent Poisson clocks of rate one, we take a deterministic process

with slots of size one, the situation becomes exactly the one studied in [74]. Hence locally, both

processes behave similarly. When a node receive the information, it will need on average a time

of
(
r + r

2 + · · · + r
r−1 + 1

)
to transmit it to all its neighbors (including possibly informed ones).

Figure 2.1 shows the comparison between results in [74] and our Theorem 2.6. In both cases,

the time to broadcast is of the order of log n but the prefactors differ and are given by the

two curves for various values of r. We see that the asynchronous version is always faster than
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Figure 2.1: Comparison of the time to broadcast in the synchronized version (dashed) and with

exponential random weights (plain)

the synchronized one. This result while surprising is in agreement with the previous discussion

comparing our Theorem 2.2 with Theorem 1.29. The process of diffusion takes advantage of the

variance of the exponential random delays and allows to broadcast the information faster in a

decentralized and asynchronous way!

2.4 Branching Process Approximation

In this section, we provide heuristics for the behaviour of the diameter of the random graph

Gn ∼ G(n, (di)
n
1 ), with minimum degree dmin, endowed with i.i.d. Exp(1) (exponential one)

edge-weights. To this end, we analyse the Markovian continuous-time branching process Z(t)

defined as follows (see also Section 1.2.2). The root has lifespan distributed according to Exp(1),

and at her death, gives birth to D children where D is distributed according to p. The subsequent

generations follow the same dynamics except that the offspring distribution is given by q defined

in Equation (2.1). It is well known that Z(t)e−(ν−1)t converges almost surely to a random

variable W , e.g., see Theorem 1.9 (in Chapter 1).
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In particular, Theorem 1.10 implies the following [24, Proposition C.4].

Proposition 2.7. The limiting random variable W is given by

W =

D∑
i=1

W̃ie
−(ν−1)ξi ,

where D is distributed according to p, the ξi’s are i.i.d. Exp(1), independent of the W̃i which

are i.i.d. with Laplace transform ϕ̃(t) = E
(
e−tW̃

)
whose inverse function is given by

ϕ̃−1(x) = (1 − x) exp

(∫ x

1

ν − 1

Gq(s) − s
+

1

1 − s
ds

)
, β < x ≤ 1. (2.11)

Given two nodes u and v in V , we grow two balls exploring their respective neighborhoods.

We assume both of these processes follow a dynamics similar to the continuous-time branching

process Z(t). This assumption will be made rigorous later when proving our main result. Our

heuristic is based on the rationale that if the two processes reach population sizes
√
n, then

there is a high probability that the two balls will intersect. More precisely, we need to find x

such that

P
(
Z(x log n) <

√
n
)
≈ n−1 , (2.12)

and then we can approximate the diameter by 2x log n.

Using Proposition 2.7, it is reasonable to analyse P
(
W < n1/2n−x(ν−1)

)
. In what follows, we

focus on deriving the behavior of P(W < ϵ) for ϵ going to 0. Note that

ψ(s) := E(e−sW ) = E
([

E
(

exp
(
−sW̃e−(ν−1)ξ

))]D)
≈ pdmin

[
E
(

exp
(
−sW̃e−(ν−1)ξ

))]dmin

,

where ξ is an Exp(1) random variable and ψ(.) is the Laplace transform of W . Moreover,

E
(

exp
(
−sW̃e−(ν−1)ξ

))
=

∫ ∞

0
e−xϕ̃

(
se−(ν−1)x

)
dx .

Combining Equation (2.11) together with the Tauberian theorem [67, Section XIII.5], we

infer that

P(W < ϵ) ≈ ϵα , α =



dmin
ν−1 , if dmin ≥ 3,

2(1−q1)
ν−1 , if dmin = 2,

1−β∗
ν−1 , if dmin = 1.
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As a byproduct, we can see that the diameter of G(n, (di)
n
1 ), with i.i.d. exponential one, can be

approximated by 2x log n, where x, given by Equation (2.12), satisfies

α(1/2 − x(ν − 1)) = −1.

We conclude that the diameter can be approximated by(
1

ν − 1
+

2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1)

)
logn.

We will show in the following four sections that this is indeed the correct asymptotic. We end

this section by giving now an overview of the proof.

There will be three different cases to consider depending on whether dmin ≥ 3, dmin = 2, or

dmin = 1. It will be convenient to consider

sn :=

(
1

dmin
11(dmin≥3) +

1

2(1 − q1)
11(dmin=2) +

1

1 − β∗
11(dmin=1)

)
log n, (2.13)

which encodes all the three cases above.

When dmin = 1, the longest shortest path in a random graph is known to be between a pair

of vertices a and b of degree one. Furthermore, this path consists of a path from a to the 2-core,

a path through the 2-core, and a path from the 2-core to b (for the non-weighted case, see [69]).

For this, we need to provide some preliminary results on the structure of the 2-core, this is

done in the next section. We then consider in Section 2.6 a certain process, called exploration

process, which consists in growing balls simultaneously from each vertex. The diameter will be

the time the last pair of balls intersect. A precise treatment of the exploration process, resulting

in information about the growth rates of the balls are given in this section. In addition, the

section provides some necessary notations and definitions that will be used throughout the last

three sections. Sections 2.7 and 2.8 form the heart of the proof. We first prove that the above

bound is an upper bound for the diameter. This will consist in defining the two parameters αn

and βn with the following significance. (i) Two balls of size at least βn intersect almost surely,

(ii) considering the growing balls centered at a vertex in the graph, the time it takes for the

balls to go from size αn to size βn have all the same asymptotic for all the vertices of the graph,

and the asymptotic is half of the typical weighted distance in the graph, and (iii) the time it

takes for the growing balls centered at a given vertex to reach size at least αn is upper bounded

by (1 + ϵ)sn for all ϵ > 0 w.h.p . This will show that the diameter is w.h.p. bounded above by

(1 + ϵ)( 1
ν−1 log n+ 2sn), for all ϵ > 0. The last section provides the corresponding lower bound.
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To obtain the lower bound, we show that w.h.p. (iv) there are at least two nodes with degree

dmin such that the time it takes for the balls centered at these vertices to achieve size at least

αn is worst than the other vertices, and is lower bounded by (1 − ϵ)sn, for all ϵ > 0. And using

this, we conclude that the diameter is w.h.p. bounded below by (1 − ϵ)( 1
ν−1 log n+ 2sn), for all

fixed ϵ > 0, finishing the proof of our main theorem.

The actual values of αn and βn will be

αn := log3 n, and βn := 3

√
λ

ν − 1
n log n. (2.14)

2.5 Structure of the Augmented 2-Core

Recall that the k-core of a given graph G is the largest induced subgraph of G with minimum

vertex degree at least k.

Consider now a random graph Gn ∼ G∗(n, (di)
n
1 ). In the process of constructing a random

graph Gn by matching the half-edges, the k-core can be found by successively removing the

half-edge of a node of degree less than k followed by removing a uniformly random half-edge

from the set of all the remaining half-edges until no such vertices (of degree less than k) remain.

What remains at this time is the k-core. Since these half-edges are unexposed, the k-core edge

set is uniformly random conditional on the k-core half-edge set (e.g., see Section 1.4.2).

From now on, we consider the case k = 2, and denote by G̃ the 2-core of a graph G. In

particular applying Theorem 1.26 to the case k = 2, we have

h(p̂) := E[Dp̂11(Dp̂ ≥ 2)]

= E[Dp̂] − P(Dp̂ = 1)

= λp̂−
∑
l

l pl p̂(1 − p̂)l−1

= λp̂ (1 −Gq(1 − p̂)).

Recall from Theorem 1.26 that we have to solve the equation λp̂2 = h(p̂), thus, we obtain

1 − p̂ = Gq(1 − p̂), and so p̂ = 1 − β.

We conclude that the graph G̃n obtained from Gn has the same distribution as a random

graph constructed by the configuration model on ñ nodes with a degree sequence d̃
(n)
1 , ..., d̃

(n)
ñ



68 Chapter 2. First Passage Percolation, Flooding, and Diameter

satisfying the following properties. By Theorem 1.26,

ñ/n
p→ h1(1 − β) := P[D1−β ≥ 2]

= 1 −Gp(β) − (1 − β)G′
p(β)

= 1 −Gp(β) − λβ(1 − β) > 0,

and

|{i, d̃(n)i = j}|/n p→
∞∑
ℓ=j

pℓ

(
ℓ

j

)
(1 − β)jβℓ−j , j ≥ 2,

∑
i

d̃
(n)
i /n

p→ λ(1 − β)2.

It follows that the sequence {d̃(n)1 , ..., d̃
(n)
ñ } satisfies also the Condition 1.17, 1.22 and 2.1 for

some probability distribution p̃k with mean λ̃ (which can be easily calculated from the two

above properties).

Let q̃ be the size-biased probability mass function corresponding to p̃. We now show that q̃

and q have the same mean. Indeed, denoting by ν̃ the mean of q̃, we see that ν̃ is given by

ν̃ :=
∑
k

kq̃k =
1

λ̃

∑
k

k(k − 1)p̃k

=

∑
k≥2 k(k − 1)

∑
ℓ≥k pℓ

(
ℓ
k

)
(1 − β)kβℓ−k

λ(1 − β)2

=

∑
ℓ pℓ
∑

k≤ℓ k(k − 1)
(
ℓ
k

)
(1 − β)kβℓ−k

λ(1 − β)2

=

∑
ℓ pℓℓ (ℓ− 1)

λ
= ν. (2.15)

To find the diameter in the case dmin = 1, we also need to show that q̃1 = β∗:

q̃1 =
2p̃2

λ̃
=

2
∑

ℓ≥2 pℓ
(
ℓ
2

)
(1 − β)2βℓ−2

λ(1 − β)2

=
1

λ
G′′

p(β) = G′
q(β) = β∗. (2.16)

We will also need the following relaxation of the notion of 2-core. Let G = (V,E) be a

graph. For a given subset W ⊆ V , define the W -augmented 2-core to be the maximal induced

subgraph of G such that every vertex in V \W has degree at least two, i.e., the vertices in W
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are not required to verify the minimum degree condition in the definition of the 2-core. The

W -augmented 2-core of a graph G will be denoted by G̃(W ).

It is easy to see that the W -augmented 2-core of a random graph Gn ∼ G∗(n, (di)
n
1 ), denoted

by G̃n(W ), can be found in the same way as the 2-core, except that now the termination condition

is that every nodes outside of W must have degree at least 2, since the half-edges adjacent to a

vertex in W are exempt from this restriction. The conditional uniformity property thus evidently

holds in this case as well, i.e., for any subset W ⊂ V , the W -augmented 2-core is uniformly

random conditional on the W -augmented 2-core half-edge set. We will need the following basic

result, the proof of which is easy and can be found for example in [69, Lemma A.7].

Lemma 2.8. Consider a random graph Gn ∼ G(n, (di)
n
1 ) where the degree sequence (di)

n
1 satis-

fies Condition 1.17. For any subsetW ⊂ V (Gn), and any w ∈W , there exists C > 0 (sufficiently

large) so that we have

P
(
e(G̃n(W )) − e(G̃n(W \ {w})) ≤ C log n

)
= 1 − o(n−1).

Note that the above lemma implies (by removing one vertex from W at a time) that if |W | =

o(n/ log n), then w.h.p. the two graphs G̃n and G̃n(W ) have the same degree distribution

asymptotic.

2.6 First Passage Percolation in G∗(n, (di)
n
1)

We start this section by introducing some new notations and definitions. Before this, one remark

is in order. In what follows, we will sometimes deliberately use the term ”time” instead of the

term ”weighted distance”. It will be clear from the context what we actually mean by this.

Let
(
G = (V,E), w

)
be a weighted graph. For a vertex a ∈ V and a real number t > 0,

the t-radius neighborhood of a in the (weighted) graph, or the ball of radius t centered at a, is

defined as

Bw(a, t) :=
{
b, distw(a, b) ≤ t

}
.

The first time t where the ball Bw(a, t) reaches size k + 1 ≥ 1 will be denoted by Ta(k), i.e.,

Ta(k) = min
{
t : |Bw(a, t)| ≥ k + 1

}
, Ta(0) = 0.
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If there is no such t, i.e., if the component containing a has size at most k, we define Ta(k) = ∞.

Note that there is a vertex in Bw(a, Ta(k)) which is not in any ball of smaller radius around a.

When the weights are i.i.d. according to a random variable with continuous density, this vertex

is in addition unique with probability one. We will assume this in what follows.

We use Ia to denote the size of the component containing a in the graph minus one, in other

words,

Ia := max
{
|Bw(a, t)|, t ≥ 0

}
− 1, (2.17)

For an integer i ≤ Ia, we use d̂a(i) to denote the forward-degree of the (unique) node added

at time Ta(i) in Bw(a, Ta(i)). Recall that the forward-degree is the degree minus one. Define

Ŝa(i) as follows.

Ŝa(i) := da + d̂a(1) + ...+ d̂a(i) − i, Ŝa(0) = da. (2.18)

For a connected graph H, the tree excess of H is denoted by tx(H), which is the maximum

number of edges that can be deleted from H while still keeping it connected. By an abuse of

the notation, for a subset W ⊆ V , we denote by tx(W ) the tree excess of the induced subgraph

G[W ] of G on W . (If G[W ] is not connected, then tx(W ) := ∞.) Consider the growing balls

Bw(a, Ta(i)) for 0 ≤ i ≤ Ia centered at a and define Xa(i) as the tree excess of Bw(a, Ta(i)), i.e.,

Xa(i) := tx (Bw(a, Ta(i)) ).

We extend the definition of Xa to all the integer values by setting Xa(i) = Xa(Ia) for all i > Ia.

The number of edges crossing the boundary of the ball Bw(a, Ta(i)) is denoted by Sa(i). A

simple calculation shows that

Sa(i) = Ŝa(i) − 2Xa(i). (2.19)

We now consider a random graph G(n, (di)
n
1 ) with i.i.d. rate one exponential weights on

its edges, such that the degree sequence (di)
n
1 satisfies Conditions 1.17, 1.22, and 2.1. One

particularly useful property of the configuration model is that it allows one to construct the

graph gradually, exposing the edges of the perfect matching one at a time. This way, each

additional edge is uniformly distributed among all possible edges on the remaining (unmatched)

half-edges.

We have the following useful lemma.
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Lemma 2.9. For any k ≤ m(n)−n
2 , we have

P
(

2Xa(k) ≥ x | Ŝa(k), Ia ≥ k
)
≤ P

(
Bin

(
Ŝa(k),

√
Ŝa(k)/n

)
≥ x | Ŝa(k), Ia ≥ k

)
.

To prove this, we need the following intermediate result proved in [69, Lemma 3.2]. We recall

here that for two real-valued random variables A and B, we say A is stochastically dominated

by B and write A ≤st B if for all x, we have P(A ≥ x) ≤ P(B ≥ x) (e.g., see Section A.2). If C

is another random variable, we write A ≤st (B |C) if for all x, P(A ≥ x) ≤ P(B ≥ x |C) a.s.

Lemma 2.10. Let M be a set of m points (m is even number), i.e., |M | = m, and let F be a

uniform random matching of elements of M . For e ∈M , we denote by F (e) the point matched

to e, and similarly for X ⊂ M , we write F (X) for the set of points matched to X. Now let

X ⊂M , k = |X|, and assume k ≤ m/2. We have

|X ∩ F (X)| ≤st Bin(k,
√
k/m).

Proof. For m = |M |, and k = |X|, we let

f(m, k, x) := P(|X ∩ F (X)| ≥ x).

We also define

g(k, p, x) := P(Bin(k, p) ≥ x).

Hence to prove the lemma, we have to show that f(m, k, x) ≤ g(k,
√
k/m, x) holds for all x.

For k = 0, 1, and any x and m ≥ 2k, clearly f(m, k, x) ≤ g(m,
√
k/m, x) holds, since for

k ≤ 1, there cannot be any internally matched endpoints, i.e., |X ∩F (X)| = 0. We now proceed

by induction on k. Assume that f(m′, k′, x) ≤ g(m′,
√
k′/m′, x) holds for all x, k′ < k, and

m′ ≥ 2k′. We will show that the inequality holds for k and any m ≥ 2k.

Note that any given point e ∈ X matches to another point in X with probability k−1
m−1 . In

this case, we have k−2 yet-unmatched points in X, and we have two internally matched points.

Otherwise, we have k − 1 remaining yet-unmatched points in X, and no internally matched

points. In both cases, the total number of yet-unmatched points is m−2. Hence, we inductively
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obtain

f(m, k, x) =
k − 1

m− 1
f(m− 2, k − 2, x− 2) +

m− k

m− 1
f(m− 2, k − 1, x)

≤ k − 1

m− 1
g(k − 2,

√
k − 2

m− 2
, x− 2) +

m− k

m− 1
g(k − 1,

√
k − 1

m− 2
, x)

≤ k

m
g(k − 2,

√
k

m
, x− 2) +

(
1 − k

m

)
g(k − 1,

√
k

m
, x).

We conclude that f(m, k, x) ≤ g(k,
√
k/m, x) by letting p =

√
k/m in the following inequal-

ity

g(k, p, x) = p · g(k − 1, p, x− 1) + (1 − p) · g(k − 1, p, x)

= p2 · g(k − 2, p, x− 2) + p(1 − p) · g(k − 2, p, x− 1) + (1 − p) · g(k − 1, p, x)

≥ p2 · g(k − 2, p, x− 2) + (1 − p2) · g(k − 1, p, x).

Proof of Lemma 2.9. Conditioning on all the possible degree sequences d̂a(1), d̂a(2), . . . , d̂a(k),

with the property that da +
∑

1≤i≤k d̂a(i) = Ŝa(k), the configuration model becomes equivalent

to the following process: start from a and at each step 1 ≤ i ≤ k, choose a vertex ai of

degree d̂a(i) + 1 uniformly at random from all the possible vertices of this degree outside the

set {a, a1, . . . , ai−1}, choose a half-edge adjacent to ai uniformly at random and match it with

a uniformly chosen half-edge from the yet-unmatched half-edges adjacent to one of the nodes

a, a1, . . . , ai−1. And at the end, after ak has been chosen, take a uniform matching for all

the remaining (m(n) − 2k) half-edges. Now the proof follows from Lemma 2.10 by the simple

observation that, since m(n) − 2k ≥ n,

P
(

Bin

(
Ŝa(k),

√
Ŝa(k)/(m(n) − 2k)

)
≥ x | Ŝa(k)

)
≤ P

(
Bin

(
Ŝa(k),

√
Ŝa(k)/n

)
≥ x | Ŝa(k)

)
.

In the sequel, we will also need to consider the number of vertices of forward-degree at least

two in the (growing) balls centered at a vertex a ∈ V . Thus, for i ≤ Ia, define

γa(i) :=

i∑
ℓ=1

11(d̂a(ℓ) ≥ 2) =
∣∣∣{b ∈ Bw(a, Ta(i)) : b ̸= a and db ≥ 3

}∣∣∣, (2.20)
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and extend the definition to all integers by setting γa(i) = γa(Ia) for all i > Ia. Note that

γa(0) = 0.

Now define T a(k) to be the first time where the ball centered at a has at least k nodes of

forward-degree at least two. More precisely,

T a(i) := min
{
Ta(ℓ), for ℓ such that γa(ℓ) ≥ k

}
. (2.21)

As we explained before, the main idea of the proof of Theorem 2.2 consists in growing the balls

around each vertex of the graph simultaneously so that the diameter becomes equal to twice the

time when the last two balls intersect. In what follows, instead of taking a graph at random and

then analyzing the balls, we use a standard coupling argument in random graph theory which

allows to build the balls and the graph at the same time. We present this coupling in the next

coming section.

2.6.1 The exploration process

Consider a random graph G ∼ G∗(n, (di)
n
1 ), with i.i.d. rate 1 exponential variables on its edges.

Fix a vertex a in G, and consider the following continuous-time exploration process. At time

t = 0, we have a neighborhood consisting only of a, and for t > 0, the neighborhood is precisely

Bw(a, t). We now give an equivalent description of this process. This provides a more convenient

way for analyzing the random variables which are crucial in our argument, e.g., Sa(k). The idea

is that instead of taking a graph at random and then analyzing the balls, the graph and the

balls are built at the same time. We will consider a growing set B and a list L of yet unmatched

half-edges. Recall that in the usual way of constructing a random graph with given degree

sequence, we match half-edges amongst themselves uniformly at random. In the following, by a

matching, we mean a pair of matched half-edges.

• Start with B = {a}, where a has da half-edges. For each half edge, decide (at random

depending on the previous choices) if the half-edge is matched to a half-edge adjacent to

a or not. Reveal the matchings consisting of those half-edges adjacent to a which are

connected amongst themselves (creating self-loops at a) and assign weights independently

at random to these edges. The remaining unmatched half-edges adjacent to a are stored

in a list L. (See the next step including a more precise description of this first step.)

• Repeat the following exploration step as long as the list L is not empty.
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Given there are ℓ ≥ 1 half-edges in the current list, say L = (h1, . . . , hℓ), let Ψ ∼ Exp(ℓ) be

an exponential variable with mean ℓ−1. After time Ψ select a half-edge from L uniformly

at random, say hi. Remove hi from L and match it to a uniformly chosen half-edge in the

entire graph excluding L, say h. Add the new vertex (connected to h) to B and reveal

the matchings (and weights) of any of its half-edges whose matched half-edge is also in

B. More precisely, let d be the degree of this new vertex and 2x the number of already

matched half-edges in B (including the matched half-edges hi and h). There is a total of

m−2x unmatched half-edges, m being the total number of half-edges of the random graph

G. Consider one of the d− 1 half-edges of the new vertex (excluding h which is connected

to hi); with probability (ℓ− 1)/(m− 2x− 1) it is matched with a half-edge in L and with

the complementary probability it is matched with an unmatched half-edge outside L. In

the first case, match it to a uniformly chosen half-edge of L and remove the corresponding

half-edge from L. In the second case, add it to L. We proceed in the similar manner for

all the d− 1 half-edges of the new vertex.

Let B(a, t) and L(a, t) be respectively the set of vertices and the list generated by the above

procedure at time t. Considering the usual configuration model and using the memoryless

property of the exponential distribution, we have Bw(a, t) = B(a, t) for all t. To see this,

we can continuously grow the weights of the half-edges h1, . . . , hℓ in L until one of their rate

1 exponential clocks fire. Since the minimum of ℓ i.i.d exponential variables with rate 1 is

exponential with rate ℓ, this is the same as choosing uniform half-edge hi after time Ψ (recall

that by our conditioning, these ℓ half-edges do not pair within themselves). Note that the final

weight of an edge is accumulated between the time of arrival of its first half-edge and the time

of its pairing (except edges going back into B whose weights are revealed immediately). Then

the equivalence follows from the memoryless property of the exponential distribution.

Note that Ta(i) is the time of the i-th exploration step in the above continuous-time explo-

ration process. Assuming L(a, Ta(i)) is not empty, at time Ta(i+1), we match a uniformly chosen

half-edge from the set L(a, Ta(i)) to a uniformly chosen half-edge among all other half-edges,

excluding those in L(a, Ta(i)). Let Ft be the σ-field generated by the above process until time t.

Given FTa(i), Ta(i+ 1) − Ta(i) is an exponential random variable with rate Sa(i) = |L(a, Ta(i))|
the size of the list consisting of unmatched half-edges in B(a, Ta(i)). In other words,

(
Ta(i+ 1) − Ta(i) | FTa(i)

)
= Exp(Sa(i)),
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this is true since the minimum of k i.i.d. rate one exponential random variables is an exponential

of rate k.

Recall that Ia = min{i, Sa(i) = 0} ≤ n − 1, and set Sa(i) = 0 for all Ia ≤ i ≤ n − 1. We

now extend the definition of the sequence d̂(i) to all the values of i ≤ n − 1, constructing the

sequence (d̂a(i))n−1
i=1 which will coincide in the range i ≤ Ia with the sequence d̂a(i) defined in

the previous subsection. We first note that in the terminology of the exploration process, the

sequence (d̂a(i))i≤Ia can be constructed as follows. At time Ta(i+ 1), the half-edge adjacent to

the (i+ 1)st vertex is chosen uniformly at random from the set of all the half-edges adjacent to

a vertex out-side B, and d̂(i+ 1) is the forward-degree of the vertex adjacent to this half-edge.

Thus, the sequence (d̂(i))i≤Ia has the following description. Initially, associate to each vertex j a

set of dj half-edges (corresponding the set of half-edges outside B and L). At step 0, remove the

half-edges corresponding to vertex a. Subsequently, at step k ≤ Ia, choose a half-edge uniformly

at random among all the remaining half-edges; if the half-edge is drawn from the node j’s half-

edges, then set d̂a(k) = dj − 1, and remove the node j and all of its half-edges. Obviously, this

description allows to extend the definition of d̂a(i) to all the values of Ia < i ≤ n− 1. Indeed, if

Ia < n− 1, there are still half-edges at step Ia + 1, and we can complete the sequence d̂a(i) for

i ∈ [Ia + 1, n−1] by continuing the sampling described above. In this way, we obtain a sequence

(d̂a(i))n−1
i=1 which coincides with the sequence defined in the previous section for i ≤ Ia.

We also extend the sequence Ŝa(i) for i > Ia thanks to (2.18). Recall that, we set Xa(i) =

Xa(Ia) for all i > Ia. It is simple to see that with these conventions, the relation (2.19) is not

anymore valid for i > Ia but we still have Sa(i) ≤ Ŝa(i) − 2Xa(i) for all i.

The process i 7→ Xa(i) is non-decreasing in i ∈ [1, n − 1]. Moreover, given FTa(i), the

increment Xa(i + 1) − Xa(i) is stochastically dominated by the following binomial random

variable

Xa(i+ 1) −Xa(i) ≤st Bin

(
d̂a(i+ 1),

(Sa(i) − 1)+

m(n) − 2(Xa(i) + i)

)
. (2.22)

Note that if i > Ia, then Sa(i) = 0 and Xa(i+ 1) −Xa(i) = 0, so that (2.22) is still valid.
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For i < n
2 , we have

(Sa(i) − 1)+

m(n) − 2(Xa(i) + i)
≤ Ŝa(i) − 2Xa(i)

m(n) − 2(Xa(i) + i)

≤ Ŝa(i)

m(n) − 2i

≤ maxℓ≤i Ŝa(ℓ)

n− 2i
.

Hence, we obtain for i < n/2 that

Xa(i) ≤st Bin

(
max
ℓ≤i

Ŝa(ℓ) + i,
maxℓ≤i Ŝa(ℓ)

n− 2i

)
. (2.23)

An important ingredient in the proof will be the coupling of the forward-degrees sequence

{d̂(i)} to an i.i.d. sequence in the range i ≤ βn, that we provide in the next subsection.

Recall that we defined αn and βn as follows (c.f. Equation (2.14))

αn = log3 n, and βn = 3

√
λ

ν − 1
n logn .

2.6.2 Coupling the forward-degrees sequence d̂a(i)

We now present a coupling of the variables {d̂a(1), ..., d̂a(k)} valid for k ≤ βn, where βn is defined

in Equation (2.14), with an i.i.d. sequence of random variables, that we now define.

Denote the order statistics of the sequence of degrees (d
(n)
i ) by

d
(n)
(1) ≤ d

(n)
(2) ≤ · · · ≤ d

(n)
(n) . (2.24)

Define m(n) :=
∑n−βn

i=1 d
(n)
(i) and let π(n) be the size-biased empirical distribution with the βn

highest degrees in (2.24) removed, i.e.,

π
(n)
k :=

∑n−βn

i=1 (k + 1)11(
d
(n)
(i)

=k+1
)

m(n)
.

Similarly, define m(n) :=
∑n

i=(βn+1)∆n
d
(n)
(i) and let π(n) be the size-biased empirical distribution

with the (βn + 1)∆n lowest degrees in (2.24) removed, i.e.,

π
(n)
k :=

∑n
i=(βn+1)∆n

(k + 1)11(
d
(n)
(i)

=k+1
)

m(n)
.
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Note that by Condition 1.17, we have βn∆n = o(n) which implies that both the distributions

π(n) and π(n) converge to the size-biased distribution q defined in Equation (2.1).

The following lemma shows that the forward-degree of the i-th vertex given the forward-

degrees of all the previous vertices is stochastically between two random variables with lower

and upper distributions π(n) and π(n) defined above, provided that i ≤ βn. More precisely,

Lemma 2.11. For a uniformly chosen vertex a, we have for all i ≤ βn,

D
(n)
i ≤st

(
d̂a(i) | d̂a(1), . . . , d̂a(i− 1)

)
≤st D

(n)
i , (2.25)

where D
(n)
i (resp. D

(n)
i ) are i.i.d. with distribution π(n) (resp. π(n)).

In particular, we have for all i ≤ βn,

i∑
k=1

D
(n)
k ≤st

i∑
k=1

d̂a(k) ≤st

i∑
k=1

D
(n)
k .

Proof. Fix the sequence of degrees {d(n)i } and the initial vertex a. We now prove that condi-

tionally on the values of (d̂a(1), ..., d̂a(j−1)), the random variable d̂a(j) is stochastically smaller

than D
(n)
j provided that j ≤ βn. This can be seen by a simple coupling argument as follows. In

the following we will look at the half-edges adjacent to a node i as balls in a bin labeled with i,

so the corresponding bin to the node i has di balls. First order the balls from 1 to m consistently

with the order statistics. In other words, the values given to balls in each bin form an interval

of consecutive numbers, and the values of the balls in the i-th bin is smaller than the values of

the balls in the (i+ 1)-th bin for each i.

Given the sequence (da, d̂a(1), ..., d̂a(j − 1)), choose uniformly at random a set of j − 1 bins

containing respectively d̂a(1) + 1, . . . , d̂a(j − 1) + 1 balls and color in red all the balls of these

bins. In order to get a sample for D
(n)
j , pick a ball at random among all balls in the last

n − (βn + 1)∆n bins and set D
(n)
j to be equal to the size of the selected bin minus one. We

now define a random variable d̃j such that d̂a(j) ≤st d̃j ≤ D
(n)
j , obtaining the desired inequality.

If the ball picked in defining D
(n)
j is white, set d̃j = D

(n)
j . If there are red balls in the last

n− (βn + 1)∆n bins, and if the chosen ball is red, suppose that this ball is the ℓ-th ball among

all the red balls in the last n− (βn + 1)∆n bins for the induced order by the enumeration of the

balls, and then define d̃j to be the size of the bin containing the ℓ-th white ball minus one. Since

da + d̂a(1) + · · · + d̂a(j − 1) ≤ βn∆n, this ball is in one of the first (βn + 1)∆n bins. In other
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words, in all cases we have d̃j ≤ D
(n)
j . By the definition of d̃j and the definition of stochastically

dominance, it is fairly easy to show that , d̂a(j) ≤st d̃j , conditioned on (d̂a(1), ..., d̂a(j−1)). Thus,

we obtain one of the inequalities. A similar argument proves the other inequality D
(n)
j ≤st d̂j

conditioned on the sequence (da, d̂a(1), ..., d̂a(j − 1)), and so the first part of the lemma follows.

The second statement follows directly from the following basic result (whose proof is provided

for the sake of completeness).

Lemma 2.12. Let X1, ..., Xt be a random process adapted to a filtration F0 = σ[∅],F1, ...,Ft, and

let Σt = X1+ ...+Xt. Consider a distribution µ such that (Xs+1|Fs) ≥st µ (resp. (Xs+1|Fs) ≤st

µ) for all 0 ≤ s ≤ t− 1. Then Σt is stochastically larger (resp. smaller) than the sum of t i.i.d.

µ-distributed random variables.

Proof. We only consider the case (Xs+1 | Fs) ≤st µ. The other case follows similarly. By

induction, it suffices to prove that for two random variables X1, X2, and for distributions µ1, µ2,

if that X1 ≤st µ1, and (X2 |X1) ≤ µ2, then

X1 +X2 ≤ Zµ1 + Zµ2 ,

where Zµ1 and Zµ2 are independent random variables with distributions µ1 and µ2, respectively.

Note that for any x such that P(X1 = x) > 0, and for any t, we have

P(X1 +X2 > t | X1 = x) ≤ P(Zµ2 > t− x) = 1 − Fµ2(t− x),

where Fµ2 denotes the cumulative distribution function for distribution µ2. By taking expecta-

tion over X1, and since Fµ2 is non-decreasing, we obtain

P(X1 +X2 > t) ≤ E[1 − Fµ2(t−X1)]

≤ E[1 − Fµ2(t− Zµ1)] = P(Zµ1 + Zµ2 > s).

2.7 Proof of the Upper Bound

In this section we present the proof of the upper bound for Theorem 2.2. Namely we prove that

for any ϵ > 0, with high probability for all vertices u and v which are in the same component
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(i.e., such that distw(u, v) <∞), we have

distw(u, v) ≤
(

1

ν − 1
+

2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1)

)
(1 + ϵ) log n

= (1 + ϵ)(
1

ν − 1
logn+ sn).

Recall that we defined αn = (log n)3 and βn = 3
√

λ
ν−1n log n. The proof will be based on

the following two technical propositions. For the sake of readability, we postpone the proof of

these two propositions to the end of this section.

The first one roughly says that for all u and v in the same component, the growing balls

centered at u and v intersect w.h.p. provided that they contain each at least βn nodes. More

precisely,

Proposition 2.13. We have w.h.p.

distw(u, v) ≤ Tu(βn) + Tv(βn), for all u and v.

The above proposition shows that in proving the upper bound, it will be enough to control

the random variable Tu(βn) for each node u in V . It turns out that in the range between αn

and βn, in the three cases dmin ≥ 3, dmin = 2, and dmin = 1, Tu(k) have more or less the same

behavior, namely, it takes time at most roughly half of the typical (weighted) distance to go

from size αn to βn. More precisely,

Proposition 2.14. For a uniformly chosen vertex u and any ϵ > 0, we have

P
(
Tu(βn) − Tu(αn) ≥ (1 + ϵ) log n

2(ν − 1)
| Iu ≥ αn

)
= o(n−1).

The conditioning Iu ≥ αn is here to ensure that the connected component which contains

u has size at least αn. In particular, note that one immediate corollary of the two above

propositions is that two nodes whose connected components have size at least αn are in the

same component (necessarily the giant component), and that the two balls of size βn centered

at these two vertices intersect w.h.p.

Using the above two propositions, we are only left to understand Tu(αn), and for this we

will need to consider the three cases separately. Before going through the proof of the upper

bound in these three cases, we need one more result. Consider the exploration process started
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at a vertex a. We will need to find lower bounds for Sa(k) in the range 1 ≤ k ≤ αn. Recall

that we defined γa(k) as the number of nodes of forward-degree at least two in the growing balls

centered at a, c.f. Equation (2.20) for the precise definition. These nodes are roughly all the

ones which could contribute to the growth of the random variable Sa(k). Now define the two

following events.

Ra :=
{
Sa(k) ≥ dmin + γa(k), for all 0 ≤ k ≤ αn − 1

}
,

R′
a :=

{
Sa(k) ≥ γa(k), for all 0 ≤ k ≤ αn − 1

}
.

Lemma 2.15. Assume da ≥ 2 and d̂a(i) ≥ 1 for all 1 ≤ i ≤ αn. Then we have

P
(
Ra | d̂a(1), . . . , d̂a(n− 1)

)
≥ 1 − o(log10 n/n), (2.26)

P
(
R′

a | d̂a(1), . . . , d̂a(n− 1)
)

≥ 1 − o(n−3/2). (2.27)

In particular, P(Ra) ≥ 1 − o(log10 n/n) and P(R′
a) ≥ 1 − o(n−3/2).

Proof. Since d̂a(i) ≥ 1, we have for all k ≤ αn,

dmin + γa(k) ≤ da + γa(k) ≤ Ŝa(k) ≤ αn∆n = o(n). (2.28)

Thus, since da ≥ 2 and Sa(k) = Ŝa(k) − 2Xa(k), we have

{Xa(αn) = 0} ⊂ Ra, {Xa(αn) ≤ 1} ⊂ R′
a.

Note that the inequalities in (2.28) are true for any sequence such that 1 ≤ d̂a(i) ≤ ∆n. In

particular, in the rest of the proof we condition on a realisation of the sequence

d = (da, d̂a(1), . . . , d̂a(n− 1)).

Note that since d̂a(i) ≥ 1, Ŝa(k) is non-decreasing in k and so maxk≤αn Ŝa(k) = Ŝa(αn).

We distinguish two cases depending on whether or not Ŝa(αn) is smaller than 3αn. Denote

this event by Q (and its complementary by Qc), i.e.,

Q :=
{
Ŝa(αn) < 3αn }.

• Case 1) Ŝa(αn) < 3αn. Conditioning on Q, by (2.23) we have

Xa(αn) ≤st Bin

(
4αn,

3αn

n− 2αn

)
.
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Thus, we have

P
(
Xa(αn) ≥ 1 | Q,d

)
≤ P

(
Bin
(
4αn,

3αn
n−2αn

)
≥ 1

)
≤ O(α2

n/n),

P
(
Xa(αn) ≥ 2 | Q,d

)
≤ P

(
Bin
(
4αn,

3αn
n−2αn

)
≥ 2

)
≤ O(α4

n/n
2).

We infer that

P
(

(Ra)c | Q,d
)

≤ O(α2
n/n),

P
(

(R′
a)c | Q,d

)
≤ O(α4

n/n
2).

• Case 2) Ŝa(αn) ≥ 3αn. Note that in this case, we still have maxk≤αn Ŝa(k) = Ŝa(αn) ≤
αn∆n = o(n). Moreover, there exists k ≤ αn such that for all ℓ ≤ k, Ŝa(ℓ) < 3αn and

Ŝa(k+ 1) ≥ 3αn. Note that since we have conditioned on the degree sequence d, the value

of k is deterministic (k is not a random variable). Conditioning on the event Qc, we obtain

by (2.23)

Xa(k) ≤st Bin

(
4αn,

3αn

n− 2αn

)
, and (2.29)

Xa(αn) ≤st Bin

(
αn(∆n + 1),

αn∆n

n− 2αn

)
.

By Condition 2.1, there exists a τ > 0 such that ∆n := O(n1/2−τ ). Let m = ⌈2τ−1⌉.
Combining the last (stochastic) inequality together with the Chernoff inequality applied

to the right-hand side binomial random variable, we obtain

P
(
Xa(αn) ≥ m | Qc,d

)
≤ P

(
Bin

(
αn(∆n + 1),

αn∆n

n− 2αn

)
≥ m

)
= O

(
(∆2

nα
2
n/n)m

)
= o(n−3).

We notice that for all ℓ > k, we have Sa(ℓ) ≥ 2αn − 2Xa(αn). Also for n large enough, we

have 2αn − 2m ≥ dmin + γa(ℓ). Therefore,{
Xa(k) = 0, Xa(αn) ≤ m, Qc

}
⊂ Ra ∩Qc, and{

Xa(k) ≤ 1, Xa(αn) ≤ m, Qc
}

⊂ R′
a ∩Qc.

This in turn implies that

P
(

(Ra)c | Qc,d
)

≤ P
(
Xa(k) ≥ 1 | Qc

)
+ P

(
Xa(αn) ≥ m | Qc

)
≤ O(α2

n/n)

P
(

(R′
a)c | Qc,d

)
≤ P

(
Xa(k) ≥ 2 | Qc

)
+ P

(
Xa(αn) ≥ m | Qc

)
≤ O(α4

n/n
2).
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In the above inequalities, we used (stochastic) Inequality (2.29) and Case 1 to bound the

terms P
(
Xa(k) ≥ 1 | Qc

)
and P

(
Xa(k) ≥ 2 | Qc

)
.

The lemma follows by the definition of αn.

We are now in position to provide the proof of the upper bound in the three different cases

depending on whether dmin ≥ 3, dmin = 2, or dmin = 1. Recall, for the ease of reading, the

definition of the two events Ra and R′
a that we will use throughout the proof below.

Ra =
{
Sa(k) ≥ dmin + γa(k), for all 0 ≤ k ≤ αn − 1

}
,

R′
a =

{
Sa(k) ≥ γa(k), for all 0 ≤ k ≤ αn − 1

}
.

The proof will be based on the analysis of these events. In particular, to justify that we have

to consider these three different cases, we note that in the case dmin ≥ 3, the value of γa(k) is

always k, while in the case dmin = 2 we need to control the length of the paths consisting of

the vertices of degree two which contribute to the value of γa(k), and in the case dmin = 1 we

need to do a kind of similar analysis as in the case dmin = 2 but in a modified configuration

model which consists of the 2-core of the graph. We also emphasize that one other important

difference between the case dmin ≥ 3 and the two other cases dmin = 1, 2 is that in the former

case, as we will prove, the graph is connected with high probability, while in the two later cases

dmin = 1, 2 we also need to consider the small components of the 2-core. In addition, in the

case dmin = 1 we need to consider the vertices which are connected to the small components of

2-core and also, the tree components.

In the following, we will use the following property of the exponential random variables,

without sometimes mentioning. If Y is an exponential random variable of rate µ, then for any

θ < µ, we have E
[
eθY
]

= µ
µ−θ .

Proof of the upper bound in the case dmin ≥ 3. Let a be a node of the graph. Consider

the exploration process defined in Section 2.6.1. First, note that in this case, the conditions

d̂a(i) ≥ 1 of Lemma 2.15 are automatically verified. Thus, as an immediate corollary, we obtain

Corollary 2.16. We have P(Ia ≥ αn) ≥ 1 − o(n−3/2).
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Proof. Indeed, for dmin ≥ 3, we have γa(k) = k so that

R′
a ⊆ {Ia ≥ αn} = {Sa(k) ≥ 1, for all 0 ≤ k ≤ αn − 1}.

Now apply Lemma 2.15.

We will need the following lemma.

Lemma 2.17. Assume dmin ≥ 3. For a uniformly chosen vertex a, and any ϵ, ℓ > 0, we have

P
(
Ta(αn) ≥ ϵ log n+ ℓ

)
= o(n−1 + e−dminℓ).

Proof. Recall that given the sequence Sa(k), for k < Ia, the random variables Ta(k+ 1)− Ta(k)

are i.i.d. exponential random variables with mean Sa(k)−1.

Assume first that R′
a holds and consider the following two cases based on whether the event

Ra holds or not.

• Case 1) Ra holds. By the definition of Ra, we have Sa(k) ≥ dmin + k for all k ≤ αn − 1.

Conditioning on Ra, we have for any k < αn,

Ta(k + 1) − Ta(k) ≤st Yk = Exp (dmin + k) ,

and the random variables Yk are all independent. Hence, we have

E
[
edmin(Ta(αn)−Ta(1)) | Ra

]
≤ E

[
edmin(

∑αn−1
k=1 )Yk | Ra

]
≤

αn−1∏
k=1

(
1 +

dmin

k

)

≤ exp

[
dmin

αn−1∑
k=1

1

k

]
≤ αdmin

n = (log n)3dmin ,

for n large enough. Thus, by Markov’s inequality, we have for any ϵ > 0,

P
(
Ta(αn) − Ta(1) ≥ ϵ logn+ ℓ | Ra

)
≤ (log n)3dmin exp(−dmin(ϵ log n+ ℓ))

=
(log n)3dmin

nϵdmin
e−dminℓ = o(e−dminℓ).
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By assumption (since Ra holds), Sa(0) ≥ dmin, and so we also have Ta(1) ≤st Exp(dmin).

Therefore,

P
(
Ta(1) ≥ ϵ log n+ ℓ | Ra

)
≤ exp(−ℓdmin)

nϵdmin
,

and we conclude

P (Ta(αn) ≥ ϵ log n+ ℓ | Ra) = o(e−dminℓ).

• Case 2) Ra does not hold. In this case, for any k < αn, by conditioning on (Ra)c ∩R′
a,

we have

Ta(k + 1) − Ta(k) ≤st Yk = Exp(k),

and all the Yk’s are independent. We have

E
[
e(Ta(αn)−Ta(2)) | Rc

a ∩R′
a

]
≤

αn−1∏
k=2

(
k

k − 1

)
= αn − 1

= log3 n− 1.

By Markov’s inequality, we have

P
(
Ta(αn) − Ta(2) ≥ ϵ log n+ ℓ | Rc

a ∩R′
a

)
≤ log3 n exp(−ϵ log n− ℓ) = o(n−ϵ/2).

We also have Ta(1) ≤st Exp(1) and Ta(2)−Ta(1) ≤st Exp(1), and we conclude in this case

P
(
Ta(αn) ≥ ϵ log n+ ℓ | Rc

a ∩R′
a

)
= o(n−ϵ/2).

Putting all the above inequalities together, we have

P
(
Ta(αn) ≥ ϵ log n+ ℓ

)
≤ 1 − P(R′

a) + (1 − P(Ra))n−ϵ/2 + o(e−dminℓ)

≤ o(n−1 + e−dminℓ),

as desired.

We can now finish the proof of the upper bound. By Proposition 2.13, we have (w.h.p.)

floodw(G(n, (di)
n
1 )) = max{distw(a, b), b ∈ V, distw(a, b) <∞} (2.30)

≤ Ta(βn ∧ Ia) + max
b
Tb(βn ∧ Ib), and

diamw(G(n, (di)
n
1 )) = max{distw(a, b), a, b ∈ V, distw(a, b) <∞} (2.31)

≤ 2 max
a

Ta(βn ∧ Ia),
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where a is chosen uniformly at random in (2.30).

By Proposition 2.14 and Corollary 2.16, and Lemma 2.17 applied to ℓ = ϵ log n, we obtain

that for a uniformly chosen vertex a and any ϵ > 0, we have

P
(
Ta(βn) ≥ 1

2(ν − 1)
(1 + ϵ) log n+ 2ϵ log n

)
= o(1). (2.32)

Indeed the above probability can be bounded above by

P (Ta(αn) ≥ 2ϵ log n) + P
(
Ta(βn) − Ta(αn) ≥ 1 + ϵ

2(ν − 1)
log n | Ia ≥ αn

)
+ P(Ia < αn),

and this is o(1) by the above cited results.

Furthermore, by Proposition 2.14 and Corollary 2.16, and Lemma 2.17 applied to ℓ = logn
dmin

,

we obtain that for a uniformly chosen vertex b and any ϵ > 0, we have

P
(
Tb(βn) ≥

(
1

2(ν − 1)
+

1

dmin

)
(1 + ϵ) log n

)
= o(n−1). (2.33)

Indeed the above probability can be bounded above by

P
(
Tb(αn) ≥ 1 + ϵ

dmin
log n

)
+ P

(
Tb(βn) − Tb(αn) ≥ 1 + ϵ

2(ν − 1)
log n | Ib ≥ αn

)
+ P(Ib < αn),

and this is o(n−1) by the above cited results.

Applying Equation (2.33) and a union bound over b, we obtain

P
(
∀b, Tb(βn) ≤

(
1

2(ν − 1)
+

1

dmin

)
(1 + ϵ) log n

)
= 1 − o(1). (2.34)

We conclude by Equations (2.30), (2.32), and (2.34) that w.h.p. (for any ϵ > 0)

floodw(G(n, (di)
n
1 ))

log n
≤ (1 + ϵ)

( 1

ν − 1
+

1

dmin

)
.

Clearly, the two equations (2.31) and (2.34) imply the bound on the diameter, that w.h.p.

diamw(G(n, (di)
n
1 ))

log n
≤ (1 + ϵ)

( 1

ν − 1
+

2

dmin

)
.

The proof of the upper bound in this case is now complete.

We end this section by the following remark on the connectivity of the random graph. We

note that the above arguments show that the graph G(n, (di)
n
1 ), satisfying Conditions 1.17, 1.22,
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and 2.1 with dmin ≥ 3, is connected w.h.p. Indeed by Lemma 2.15, R′
a holds with probability at

leat 1−o(n−1). With probability 1−o(n−1), for a uniformly chosen vertex a, we have Sk(a) ≥ 1

for all 1 ≤ k ≤ αn. By a union bound argument, with probability 1−o(1) the size of the growing

ball centered at a reaches αn for all nodes a in the graph. Using Lemma 2.22 shows that for all

nodes, this cluster also reaches βn. The connectivity then follows by applying Proposition 2.13.

Proof of the upper bound in the case dmin = 2. Consider the exploration process defined

in Section 2.6.1 starting from a. Recall the definitions (2.20) and (2.21): γa(i) is the number of

nodes with forward-degree (strictly) larger than one until the i-th exploration step, and T a(k)

is the first time that the k-th node with the forward-degree (strictly) larger than one appears in

the exploration process started at node a. We also define the sets

La(k) :=
{
ℓ, T a(k) ≤ Ta(ℓ+ 1) < T a(k + 1)

}
,

for k ≥ 0, and let na(k) be the smallest ℓ in La(k). Clearly, we have na(k) ≥ k − 1 and

γ−1
a (k) = La(k) = [na(k), na(k + 1) − 1].

For x, y ∈ R, we denote x ∧ y = min(x, y). We will need the following lemma, equivalent to

Lemma 2.17 (in the case dmin ≥ 3).

Lemma 2.18. For a uniformly chosen vertex a, any x > 0, and any ℓ = O(log n), we have

P
(
Ta(αn ∧ Ia) ≥ x logn+ ℓ

)
≤ o(n−1) + o(e−2(1−q1)ℓ).

Proof. Recall that given the sequence Sa(k), for k < Ia, the random variables Ta(k+ 1)− Ta(k)

are i.i.d. exponential random variables with mean Sa(k)−1. First write

Ta(αn) =
∑

0≤j<αn

Ta(j + 1) − Ta(j)

≤
∑
k≤Kn

T a(k + 1) − T a(k),

where Kn is the largest integer such that na(Kn) ≤ αn.

We now show that for any x > 0 and ℓ = O(log n),

P
(
Ta(αn) ≥ x log n+ ℓ, Ra

)
= o(e−2(1−q1)ℓ). (2.35)
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Remark that a sum of a geometric (with parameter π) number of independent exponential ran-

dom variables with parameter µ is distributed as an exponential random variable with parameter

(1 − π)µ. For any k ≤ Kn, we have:

T a(k + 1) − T a(k) =
∑

j∈La(k)

Ta(j + 1) − Ta(j)

Assume Ra holds, then we have Sa(j) ≥ 2 + k for all j ∈ [na(k), na(k + 1) − 1] = La(k). Thus,

Ta(j + 1) − Ta(j) ≤st Yk,i ∼ Exp(2 + k),

where i = j − na(k) + 1, and all the Yk,i’s are independent. (for i = 1, . . . , |La(k)|, Yk,i are

exponential random variables with rate 2 + k.)

For any positive t and θ, we obtain

P
(
Ta(αn) − T a(1) ≥ t, Ra

)
≤ E

E
11(Ra)

∏
1≤k≤Kn

eθ(Ta(k+1)−Ta(k)) | da, . . . , d̂a(n− 1)

 e−θt

= E

 ∏
1≤k≤Kn

eθ
∑|La(k)|

i=1 Yk,iP
(
Ra | da, . . . , d̂a(n− 1)

) e−θt

≤
∏

1≤k≤αn

(
1 +

θ

(2 + k)(1 − π
(n)
1 ) − θ

)
e−θt,

where in the last inequality, we used the fact that the probability for a new node to have forward-

degree one is at most π
(n)
1 , and so the length |La(k)| is dominated by a geometric random variable

with parameter π
(n)
1 . Taking θ = 2(1 − π

(n)
1 ) in the above inequality, we get

P
(
Ta(αn) − T a(1) ≥ t, Ra

)
≤

∏
k≤αn

(
1 +

2(1 − π
(n)
1 )

(1 − π
(n)
1 )i

)
e−2(1−π

(n)
1 )t

≤ exp

[
2

αn−1∑
i=1

1

i

]
e−θt < α3

ne
−2(1−π

(n)
1 )t.

In the same way, we can easily deduce that(
T a(1) | Ra

)
≤st Exp(2(1 − π

(n)
1 )).

Let t = x log n + ℓ, and note that ℓ ≤ C log n for some constant C > 0 (by assumption

ℓ = O(log n)). Take any 0 < ϵ < x(1 − q1)(C + x)−1; since for n sufficiently large, we have
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π
(n)
1 ≤ q1 + ϵ, we obtain

P
(
Ta(αn) ≥ x log n+ ℓ, Ra

)
≤ α3

n

n2(x(1−q1−ϵ)−ϵC)
e−2(1−q1)ℓ,

and (2.35) follows. Note that x(1 − q1 − ϵ) − ϵC > 0 by the choice of ϵ.

Assume now that the event R′
a∩Rc

a holds. Two cases can happen: either Ia < αn or Ia ≥ αn.

If Ia < αn, then by the definition of R′
a, 0 = Sa(Ia) ≥ γa(Ia), i.e., γa(Ia) = 0. In other words,

the component of a is a union of cycles (or loops) having node a as a common node, and with

total number of edges less than αn. Hence, in this case, we have

P
(
R′

a, R
c
a, Ia < αn, Ta(Ia) ≥ x log n+ ℓ

)
≤ P

(
Rc

a | da, . . . , d̂a(n− 1)
) ∑

0≤k≤αn

(π
(n)
1 )k

∫ ∞

x logn+ℓ
tk
e−t

k!
dt


≤ log10 n

n
(1 − π

(n)
1 )−1 exp

(
−(1 − π

(n)
1 )(x log n+ ℓ)

)
= o(n−1),

where the last inequality follows from Inequality (2.26) in Lemma 2.15.

In the second case, when Ia ≥ αn, let

Q = R′
a ∩Rc

a ∩
{
Ia ≥ αn

}
.

If Q holds, by the definition of R′
a, we have Sa(j) ≥ k for all j ∈ La(k). Thus,

Ta(j + 1) − Ta(j) ≤st Yk,i ∼ Exp(k),

where i = j − na(k) + 1, and all the Yk,i’s are independent. (for i = 1, . . . , |La(k)|, Yk,i are

exponential random variables with rate k.) Hence, by the same argument as above, we have

P
(
Ta(αn) − T a(2) ≥ t,Q

)
≤ E

E
11(Q)

∏
2≤k≤Kn

eθ(Ta(k+1)−Ta(k)) | da, . . . , d̂a(n− 1)

 e−θt

≤ E

 ∏
2≤k≤Kn

eθ
∑|La(k)|

i=1 Yk,iP
(
Rc

a | da, . . . , d̂a(n− 1)
) e−θt

≤
∏

2≤k≤αn

(
1 +

θ

k(1 − π
(n)
1 ) − θ

)
e−θto

(
log10 n

n

)
,
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where the last inequality follows from Inequality (2.26) in Lemma 2.15. Thus, taking θ = 1−π(n)1

gives

P
(
Ta(αn) − T a(2) ≥ t,Q,

)
≤

∏
2≤k≤αn

(
1 +

1

k − 1

)
e−(1−π

(n)
1 )to

(
log10 n

n

)

≤ exp

(
αn∑
k=2

1

k − 1

)
e−(1−π

(n)
1 )to

(
log10 n

n

)
≤ e−(1−π

(n)
1 )to

(
log16 n

n

)
.

Since da ≥ 2, we can easily deduce that(
T a(2) | Q

)
≤st Exp(2(1 − π

(n)
1 )) + Exp(1 − π

(n)
1 ),

with these two exponential being independent and independent of Q. Hence, we have

P
(
T a(2) ≥ t | Q

)
≤
∫ ∞

t
2(1 − π

(n)
1 )

(
e−(1−π

(n)
1 )x − e−2(1−π

(n)
1 )x

)
≤ 2e−(1−π

(n)
1 )t.

Thus,

P
(
Ta(αn) ≥ t,Q

)
≤ e−(1−π

(n)
1 )to

(
log16 n

n

)
.

Similar to the case where Ra holds (by fixing a constant ϵ small enough and using that for n

sufficiently large π
(n)
1 ≤ q1 + ϵ for n large enough), we get

P
(
Ta(αn) ≥ x log n+ ℓ,Q

)
≤ o

(
log16 n

n1+(1−q1−ϵ)C

)
= o(n−1).

Putting all the above arguments together, and considering the three disjoint cases (R′
a)c

holds, Ra holds, and R′
a ∩Rc

a holds (in which case either Ia < αn or Ia ≥ αn), we conclude that

P
(
Ta(αn ∧ Ia) ≥ x log n+ ℓ

)
≤ o(e−2(1−q1)ℓ) + o(n−1) + 1 − P(R′

a).

To conclude the proof it suffices to use Lemma 2.15.

We can now finish the proof of the upper bound in the case dmin = 2. By Proposition 2.14,

and Lemma 2.18 applied to ℓ = logn
2(1−q1)

, we obtain that for a uniformly chosen vertex a and any

ϵ > 0, we have

P
(
∞ > Ta(βn ∧ Ia) ≥

(
1

2(ν − 1)
+

1

2(1 − q1)

)
(1 + ϵ) log n

)
= o(n−1). (2.36)
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Indeed the above probability can be bounded above by

P
(
Ta(αn ∧ Ia) ≥ 1 + ϵ

2(1 − q1)
log n

)
+ P

(
Ta(βn) − Ta(αn) ≥ 1 + ϵ

2(ν − 1)
logn | Ia ≥ αn

)
,

and this is o(n−1) by the above cited results.

Applying Equation (2.36) (and Lemma 2.18) and a union bound over a, we obtain

P
(
∀a, Ta(βn ∧ Ia) ≤

(
1

2(ν − 1)
+

1

2(1 − q1)

)
(1 + ϵ) log n

)
= 1 − o(1). (2.37)

Hence by Proposition 2.13, we have w.h.p.

diamw(G(n, (di)
n
1 ))

log n
≤ (1 + ϵ)

( 1

ν − 1
+

1

1 − q1

)
.

This proves the bound on the diameter. To obtain the upper bound for the flooding, we use

Equation (2.37), and proceed as above by applying Proposition 2.14, and Lemma 2.18 applied

to ℓ = ϵ log n, to obtain that for a uniformly chosen vertex b, we have

P
(
Tb(βn ∧ Ib) ≤ (

1 + ϵ

2(ν − 1)
+ ϵ) log n

)
= 1 − o(1). (2.38)

Clearly, Equations (2.37) and (2.38) imply the bound on the flooding.

The proof of the upper bound in this case is now complete.

Proof of the upper bound in the case dmin = 1. We denote by Ca the event that a is

connected to the 2-core of Gn. It is well-known (c.f. Section 2.5) that the condition ν > 1

ensures that the 2-core of Gn has size Ω(n), w.h.p.

We consider the graph G̃n(a) obtained from Gn by removing all vertices of degree one except

a until no such vertices exist. If the event Ca holds, G̃n(a) consists of the 2-core of Gn and the

unique path (empty if a belongs to the 2-core) from a to the 2-core. While, if the event Cc
a holds,

then the graph G̃n(a) is the union of the 2-core of Gn and the isolated vertex a.

In order to bound the weighted distance between two vertices a and b, in what follows, we

will consider two cases depending on whether both the vertices a and b are connected to the

2-core (i.e., the events Ca and Cb both hold), or both the vertices a and b belong to the same

tree component of the graph. In the former case, we will show how to adapt the analysis we

made in the case dmin = 2 to this case. And in the latter case, we directly bound the diameter

of all the tree components of the graph.
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First note that G̃n(a) can be constructed by means of a configuration model with a new

degree sequence d̃, c.f. Section 2.5. Consider the exploration process on the graph G̃n(a) and

denote by T̃a(i) the first time the ball B̃w(a, t) in G̃n(a) reaches size i + 1. Also, Ĩa is defined

similarly to Ia for the graph G̃n(a). We need the following lemma.

Lemma 2.19. For a uniformly chosen vertex a, any x > 0 and any ℓ = O(log n), we have

P
(
T̃a(αn ∧ Ĩa) ≥ x log n+ ℓ

)
≤ o(n−1) + o(e−(1−β∗)ℓ).

Proof. First note that if Ca does not hold, i.e., if a is not connected to the 2-core, we will have

Ĩa = 0 (since d̃a = 0), and there is nothing to prove. Now the proof follows the same lines as in

the proof of Lemma 2.18. Note that conditional on Ca, we have d̃a ≥ 1, hence by Lemma 2.15,

we have P(Ra | Ca, d̃) ≥ 1 − o(log10 n/n), and similarly for R′
a. The only difference we have to

highlight here, compared to the proof of Lemma 2.18, is that conditional on Ra ∩ Ca, we have

S̃a(j) ≥ 1 + k for all j ∈ L̃a(k), where S̃a(j) and L̃a(k) are defined in the same way as Sa(j)

and La(k) for the graph G̃(a). Take now θ = 1 − π̃
(n)
1 in the Chernoff bound, used in the proof

of Lemma 2.18, where π̃(n) is defined as π(n) for the degree sequence (d̃
(n)
1 , ..., d̃

(n)
ñ ). The rest

of the proof of Lemma 2.18 can then be easily adapted to obtain the same result provided we

replace 2(1− q1) by (1− β∗), which is precisely the statement of the current lemma. (Note that

β∗ = q̃1, c.f. Section 2.5.)

By Proposition 2.14 applied to the graph G̃n(a) (note that ν̃ = ν, cf. see Section 2.5), and

Lemma 2.19 applied to ℓ = logn
1−β∗

, we obtain that for a uniformly chosen vertex a and any ϵ > 0,

we have

P
(
∞ > T̃a(βn ∧ Ĩa) ≥

(
1

2(ν − 1)
+

1

1 − β∗

)
(1 + ϵ) log n

)
= o(n−1). (2.39)

Indeed the above probability can be bounded above by

P
(
T̃a(αn ∧ Ĩa) ≥ 1 + ϵ

1 − β∗
log n

)
+ P

(
T̃a(βn) − T̃a(αn) ≥ 1 + ϵ

2(ν − 1)
logn | Ĩa ≥ αn

)
,

and this is o(n−1) by the above cited results.

Applying Equation (2.39) (and Lemma 2.19) and a union bound over a, we obtain

P
(
∀a, T̃a(βn ∧ Ĩa) ≤

(
1

2(ν − 1)
+

1

1 − β∗

)
(1 + ϵ) log n

)
= 1 − o(1). (2.40)
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To obtain the upper bound for the flooding, we use Equation (2.40), and proceed as above

by using Lemma 2.19 applied to ℓ = ϵ log n, to obtain that for a uniformly chosen vertex b, we

have

P
(
T̃b(βn ∧ Ĩb) ≤ (

1 + ϵ

2(ν − 1)
+ ϵ) log n

)
= 1 − o(1). (2.41)

Clearly, the two equations (2.40) and (2.41) together with Proposition 2.13 (since T̃a(k) ≥ Ta(k)

for all k), imply the desired upper bound on the (weighted) flooding and (weighted) diameter

on the giant component of Gn and also on every components containing a cycle, i.e, connected

to 2-core.

At this point, we are only left to bound the (weighted) diameter and the (weighted) flooding

of the tree components. In particular, the following lemma concludes the proof.

Lemma 2.20. For two uniformly chosen vertices a, b, and any ϵ > 0, we have

P
(

1 + ϵ

1 − β∗
log n < distw(a, b) <∞, Cc

a, Cc
b

)
= o(n−2).

Proof. We consider the graph G̃n(a, b) obtained from Gn by removing vertices of degree less

than two except a and b until no such vertices exist. As shown in Section 2.5, the random

graph G̃n(a, b) can be still obtained by a configuration model, and has the same asymptotic

parameters as the random graph G̃n(a) in the proof of the previous lemma. We denote again

by d̃, the degree sequence of the random graph G̃n(a, b). Also, T̃a and Ĩa are defined similarly

for the graph G̃n(a, b).

Trivially, we can assume d̃a = 1 and d̃b = 1, otherwise, either they are not in the same

component and so distw(a, b) = ∞, or one of them is in the 2-core, i.e., one of the two events Ca
or Cb holds. Consider now the exploration process started at a until time k∗ which is the first

time either a node with forward-degree (strictly) larger than one appears or the time that the

unique half-edge adjacent to b is chosen by the process. Let v∗ be the node chosen at k∗. Note
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that d̃v∗ = 1 if and only if the half-edge incident to b is chosen at k∗. We have

P
(

1 + ϵ

1 − β∗
log n < distw(a, b) <∞, , Cc

a, Cc
b

)
= P

(
T̃a(k∗) >

1 + ϵ

1 − β∗
log n, v∗ = b, d̃a = d̃b = 1

)
≤ P

(
T̃a(k∗) >

1 + ϵ

1 − β∗
log n, v∗ = b | d̃a = d̃b = 1

)
= P

(
T̃a(k∗) >

1 + ϵ

1 − β∗
log n | d̃a = d̃b = 1

)
×

P
(
d̃v∗ = 1 | d̃v∗ ̸= 2, d̃a = d̃b = 1

)
= o(n−2).

To prove the last equality above, first note P(d̃v∗ = 1 | d̃v∗ ̸= 2, d̃a = d̃b = 1) = O( 1
n), this

holds since ν = ν̃ > 1 and v∗ will be chosen before o(n) steps, i.e., k∗ = o(n) (we will indeed

prove something much stronger, that k∗ = O(log n), c.f. Lemma 2.25 in the next section). And

second, P
(
T̃a(k∗) > 1+ϵ

1−β∗
log n | d̃a = d̃b = 1

)
= o(1/n), this follows by the same argument as

in the proof of Lemma 2.19 applied to G̃n(a, b), and by setting ℓ = (1+ϵ) logn
1−β∗

.

The proof of the upper bound in this case is now completed by taking a union bound over all

a and b. We end this section by presenting the proof of Proposition 2.13 and Proposition 2.14

in the next subsection.

2.7.1 Proof of Proposition 2.13 and Proposition 2.14

We start this section by giving some preliminary results that we will need in the proof of

Proposition 2.13 and Proposition 2.14.

Lemma 2.21. Let D
(n)
i be i.i.d. with distribution π(n). For any η < ν, there is a constant γ > 0

such that for n large enough we have

P
(
D

(n)
1 + · · · +D

(n)
k ≤ kη

)
≤ e−γk. (2.42)

Proof. Let D∗ be a random variable with distribution P(D∗ = k) = qk given in Equation (2.1)

so that E[D∗] = ν. Let ϕ(θ) = E[e−θD∗
]. For any ϵ > 0, there exists θ0 > 0 such that for any

θ ∈ (0, θ0), we have

log ϕ(θ) < (−ν + ϵ)θ.
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By Condition 1.17 and the fact that βn∆n = o(n), i.e.,
∑n

i=n−βn+1 d
(n)
(i) = o(n), we have for any

θ > 0,

lim
n→∞

ϕ(n)(θ) = ϕ(θ),

where ϕ(n)(θ) = E[e−θD
(n)
1 ]. Also, for θ > 0,

P
(
D

(n)
1 + · · · +D

(n)
k ≤ ηk

)
≤ exp

(
k
(
θη + log ϕ(n)(θ)

))
.

Fix θ < θ0 and let n be sufficiently large so that log ϕ(n)(θ) ≤ log ϕ(θ) + ϵ. This yields

P
(
D

(n)
1 + · · · +D

(n)
k ≤ ηk

)
≤ exp (k (θη + log ϕ(θ) + ϵθ))

≤ exp (kθ (η − ν + 2ϵ)) ,

which concludes the proof.

The following lemma is the main step in the proof of both propositions.

Lemma 2.22. For any ϵ > 0, define the event

R′′
a :=

{
Sa(k) ≥ ν − 1

1 + ϵ
k, for all αn ≤ k ≤ βn

}
.

For a uniformly chosen vertex a, we have P
(
R′′

a | Ia ≥ αn

)
≥ 1 − o(n−5).

Before giving the proof of this lemma, we recall the following basic result and one immediate

corollary, for the proof see for example [120, Theorem 1].

Lemma 2.23. Let n1, n2 ∈ N and p1, p2 ∈ (0, 1). We have Bin(n1, p1) ≤st Bin(n2, p2) if and

only if the following conditions hold

(i) n1 ≤ n2,

(ii) (1 − p1)
n1 ≥ (1 − p2)

n2.

In particular, we have

Corollary 2.24. If x ≤ y = o(n), we have (for n large enough)

x− Bin(x,
√
x/n) ≤st y − Bin(y,

√
y/n).
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Proof. By the above lemma, it is sufficient to show

(x/n)x/2 ≥ (y/n)y/2,

and this is true because ss is decreasing near zero (for s < e−1).

Now we go back to the proof of Lemma 2.22.

Proof of Lemma 2.22. By Lemmas 2.11 and 2.21, for any ϵ > 0, k ≥ αn and n large enough, we

have

P
(
d̂a(1) + ...+ d̂a(k) ≤ ν

1 + ϵ/2
k

)
≤ e−γk = o(n−6).

We infer that with probability at least 1 − o(n−6), for any k ≤ βn,

ν − 1

1 + ϵ/2
k < da + d̂a(1) + ...+ d̂a(k) − k < (k + 1)∆n = o(n).

By the union bound over k, we have with probability at least 1−o(n−5) that for all αn ≤ k ≤ βn,

ν − 1

1 + ϵ/2
k < Ŝa(k) < (k + 1)∆n = o(n). (2.43)

Hence in the remaining of the proof we can assume that the above condition is satisfied.

By Lemma 2.9, Corollary 2.24 and Inequality (2.43), conditioning on Ŝa(k) and {Ia ≥ k},

we have

(
Sa(k) | {Ia ≥ k}

)
≥st

ν − 1

1 + ϵ/2
k − Bin

(
ν − 1

1 + ϵ/2
k,

√(
ν − 1

1 + ϵ/2
k

)
/n

)
≥st

ν − 1

1 + ϵ/2
k − Bin

(
νk,
√
νk/n

)
.

By Chernoff’s inequality, since k
√
k/n = o(k/

√
αn), we have

P
(

Bin(νk,
√
νk/n) ≥ k/

√
αn

)
≤ exp

(
−1

3
k/

√
αn

)
= o(n−6).

Moreover, conditioned on {Ia ≥ k}, we have with probability at least 1 − o(n−6),

Sa(k) ≥ ν − 1

1 + ϵ/2
k − k

√
αn

≥ ν − 1

1 + ϵ
k,
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for n large enough. Defining

R′′
a(k) :=

{
Sa(k) ≥ ν − 1

1 + ϵ
k

}
for αn ≤ k ≤ βn,

so that R′′
a =

∩βn

k=αn
R′′

a(k), we have

P
(
R′′

a(k) | Ia ≥ k
)
≥ 1 − o(n−6). (2.44)

Thus, by using the fact that R′′
a(k − 1) ⊂

{
Ia ≥ k

}
, we get

P
(
R′′

a | Ia ≥ αn

)
= 1 − P

 βn∪
k=αn

R′′
a(k)c | Ia ≥ αn


= 1 − P

R′′
a(αn)c ∪

βn∪
k=αn+1

(
R′′

a(k)c ∩ R′′
a(k − 1)

)
| Ia ≥ αn


≥ 1 − P

R′′
a(αn)c ∪

βn∪
k=αn+1

(
R′′

a(k)c ∩
{
Ia ≥ k

})
| Ia ≥ αn


≥ 1 −

βn∑
k=αn

P
(
R′′

a(k)c | Ia ≥ k
)

≥ 1 − o(n−5),

which concludes the proof.

We are now in position to provide the proof of both the propositions.

Proof of Proposition 2.13. Fix two vertices u and v. We can assume that Tu(βn), Tv(βn) < ∞,

i.e., Iu, Iv ≥ βn, otherwise the statement of the proposition holds trivially for u and v. Note

that distw(u, v) ≤ Tu(βn) + Tv(βn) is equivalent to

Bw(u, Tu(βn)) ∩Bw(v, Tv(βn)) ̸= ∅.

Hence, to prove the proposition we need to bound the probability that Bw(v, Tv(βn)) does not

intersect Bw(u, Tu(βn)).

First consider the exploration process for Bw(u, t) until reaching t = Tu(βn). We know by

Lemma 2.22 that with probability at least 1 − o(n−5),

Su(βn) ≥ (ν − 1 − o(1))βn.
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(In other words, there are at least (ν − 1 − o(1))βn half-edges in Bw(u, Tu(βn)).)

Next, begin exposing Bw(v, t). Each matching adds a uniform half-edge to the neighborhood

of v. Therefore, the probability that Bw(v, Tv(βn)) does not intersect Bw(u, Tu(βn)) is at most

(
1 − (ν − 1 − o(1))βn

m(n)

)βn

≤ exp[−(9 − o(1)) log n] < n−4

for large n (recall that β2n = 9λn logn
ν−1 ). The union bound over u and v completes the proof.

Proof of Proposition 2.14. Conditioning on the event R′′
a defined in Lemma 2.22, we have for

any αn ≤ k ≤ βn,

Ta(k + 1) − Ta(k) ≤st Yk ∼ Exp(Sa(k)) ≤st Exp

(
ν − 1

1 + ϵ
k

)
,

and all the Yk’s are independent.

Letting s =
√
αn, for n large enough we obtain that

E
[
es(Ta(βn)−Ta(αn)) | R′′

a

]
≤

βn−1∏
k=αn

(
1 +

s
(ν−1)k
1+ϵ − s

)
≤

βn−1∏
k=αn

(
1 +

s(1 + 2ϵ)

(ν − 1)k

)

≤ exp

s(1 + 2ϵ)

ν − 1

βn−1∑
k=αn

1

k


≤ exp

[
s(1 + 3ϵ) log n

2(ν − 1)

]
.

By Markov’s inequality,

P
(
Ta(βn) − Ta(αn) ≥ (1 + 4ϵ) log n

2(ν − 1)
| Ia ≥ αn

)
≤ 1 − P(R′′

a) + E
[
es(Ta(βn)−Ta(αn)) | R′′

a

]
. exp

(
−s(1 + 4ϵ) log n

2(ν − 1)

)
≤ exp

(
− sϵ log n

2(ν − 1)

)
+ o(n−5) = o(n−1),

which concludes the proof.
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2.8 Proof of the Lower Bound

In this section we present the proof of the lower bound for Theorem 2.2. To prove the lower

bound, it suffices to show that for any ϵ > 0, there exist w.h.p. two vertices u and v such that

distw(u, v) >

(
1

ν − 1
+

2

dmin
11(dmin≥3) +

1

(1 − q1)
11(dmin=2) +

2

1 − β∗
11(dmin=1)

)
(1 − ϵ) log n

=(1 − ϵ)(
1

ν − 1
log n+ sn).

As in the proof of the upper bound, the proof will be different depending whether dmin = 1, 2,

or ≥ 3. So we start this section by proving some preliminary results, including some new

notations and definitions, that we will need in the proof for these three cases, and then divide

the end of the proof into three cases.

Fix a vertex a in Gn ∼ G(n, (di)
n
1 ), and consider the exploration process, defined in Sec-

tion 2.6.1. Recall that T a(1) is the first time when the ball centered at a contains a vertex of

forward-degree at least two (i.e., degree at least 3), c.f. Equation-Definition (2.21). To simplify

the notation, we denote by Ca the ball centered at a containing exactly one node (possibly in

addition to a) of degree at least 3:

Ca := Bw(a, T a(1)). (2.45)

Note that there is a vertex u (of degree du ≥ 3) in Ca which is not in any ball Bw(a, t) for

t < T a(1) and we have maxv∈Ca distw(a, v) = distw(a, u). We define the degree of Ca as

deg(Ca) = da + du − 2. (2.46)

Remark that at time T a(1) of the exploration process defined in Section 2.6.1 starting from a,

we have at most deg(Ca) free half-edges, i.e., the list L contains at most deg(Ca) half-edges. (we

have the equality if the tree excess until time T a(1) is zero.) The following lemma shows that

the size of Ca is relatively small.

Lemma 2.25. Consider a random graph G(n, (di)
n
1 ) where the degrees di satisfy Conditions

1.17 and 1.22. There exists a constant M > 0, independent of n, such that w.h.p. for all the

nodes a of the graph, we have |Ca| ≤M log n.

Proof. We consider the exploration process, defined in Section 2.6.1, starting from a uniformly

chosen vertex a, and use the coupling of the forward-degrees we described in subsection 2.6.2.
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Recall in particular that each forward-degree d̂(i) conditioned on the previous forward-degrees is

stochastically larger than a random variable with distribution π(n). This shows that, at each step

of the exploration process, the probability of choosing a node of degree at most two (forward-

degree one or zero) will be at most π
(n)
0 +π

(n)
1 < 1− ϵ, for some ϵ > 0 (note that the asymptotic

mean of π(n) is ν, and by assumption ν > 1). We conclude that there exists a constant M > 0

such that for all large n,

P(|Ca| > M log n) = o(n−1).

The union bound over a completes the proof.

For two subsets of vertices U,W ⊂ V , the (weighted) distance between U and W is defined

as usual,

distw(U,W ) := min
{

distw(u,w) | u ∈ U, w ∈W
}
.

For two nodes a, b, define the event Ha,b as

Ha,b :=

{
1 − ϵ

ν − 1
log n < distw(Ca, Cb) <∞

}
. (2.47)

Note that logn
ν−1 is the typical distance, so the left inequality in the definition of the above

event means that Ca and Cb have the right typical distance in the graph (modulo a factor (1−ϵ)).
The right inequality simply means that a and b belong to the same connected component. The

following proposition is the crucial step in the proof of the lower bound, the proof of which is

postponed to the end of this section.

Proposition 2.26. Consider a random graph G(n, (di)
n
1 ) with i.i.d. rate one exponential weights

on its edges. Suppose that the degree sequence (di)
n
1 satisfies Conditions 1.17 and 1.22. Assume

that the number of nodes with degree one satisfy u
(n)
1 = o(n), and let a and b be two distinct

vertices such that deg(Ca) = O(1), and deg(Cb) = O(1). Then for all ϵ > 0,

P (Ha,b) = 1 − o(1).

Furthermore, the same result holds without the condition deg(Ca) = O(1) if the node a is chosen

uniformly at random and deg(Cb) = O(1).

Assuming the above proposition, we now show that
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(i) If the minimum degree dmin ≥ 3, then there are pairs of nodes a and b of degree dmin such

that the event Ha,b holds and in addition all the weights on the edges adjacent to a or b

are at least (1 − ϵ) log n/dmin w.h.p., for all ϵ > 0.

(ii) If the minimum degree dmin = 2, then there are pairs of nodes a and b of degree two such

that Ha,b holds and in addition, the closest nodes to each with forward-degree at least two

is at distance at least (1 − ϵ) log n/(2(1 − q1)) w.h.p., for all ϵ > 0.

(iii) If the minimum degree dmin = 1, then there are pairs of nodes of degree one such that

Ha,b holds and in addition, the closest node to each which belongs to the 2-core is at least

(1 − ϵ) log n/(1 − β∗) away w.h.p., for all ϵ > 0.

This will finish the proof of the claimed lower bound.

Proof of the lower bound in the case dmin ≥ 3. Let V ∗ be the set of all vertices of degree

dmin. We call a vertex u in V ∗ good if T u(1) is at least (1 − ϵ)sn, i.e.,

T u(1) ≥ (1 − ϵ)sn,

and if in addition, deg(Cu) ≤ K for a constant K chosen as follows. Let D̂ be a random variable

with the size-biased distribution, i.e., P(D̂ = k) = qk. The constant K is chosen in order to have

with positive probability D̂ ≤ dmin − 1 +K, i.e.,

y = yK := P
(
D̂ ≤ dmin − 1 +K

)
> 0. (2.48)

It will be convenient to consider the two events in the definition of good vertices separately,

namely, for a vertex u ∈ V ∗, define

Eu :=
{
T u(1) ≥ (1 − ϵ)sn

}
, and (2.49)

E ′
u := {deg(Cu) ≤ K} . (2.50)

We note that in the case dmin ≥ 3, the event Eu for u ∈ V ∗ is equivalent to having a weight

greater than (1 − ϵ)sn on all the dmin edges connected to u, and clearly, the two above events

E ′
u and Eu are independent (conditionally on u ∈ V ∗, i.e., du = dmin).

For u ∈ V ∗, let Au be the event that u is good, Au := Eu∩E ′
u, and let Y be the total number

of good vertices, Y :=
∑

u 11Au . In the following, we first obtain a bound for the expected value
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of Y , and then use the second moment inequality to show that w.h.p. Y = Ω(nϵ).

E[Y ] =
∑
u∈V ∗

P(Au) =
∑
u∈V ∗

P(Eu) · P(E ′
u) (By the independence of Eu and E ′

u)

=
∑
u∈V ∗

nϵ−1P(E ′
u) (Since P(Eu) = P (Exp(dmin) ≥ (1 − ϵ)sn))

=
∑
u∈V ∗

nϵ−1(1 ± o(1))y

= (1 ± o(1))pdmin
nϵy.

In the equality before last one, we used the coupling argument described in Section 2.6.2 to bound

the forward-degrees from above (and below) by i.i.d. random variables having distributions π(n)

(and π(n)), and then used the fact that the asymptotic distributions of both π(n) and π(n)

coincides with the size biased distribution {qk}. This is where the factor (1±o(1))y in the above

equality comes from. The last equality is simply obtained from Condition 1.17, which implies

that |V ∗| = (1 ± o(1))pdmin
n.

We now show that Var(Y ) = o(E[Y ]2). Applying the Chebyshev inequality, this will show

that Y ≥ 2
3pdmin

nϵ with high probability.

We have

E[Y 2] = E

[
(
∑
u∈V ∗

11Au)2

]
= E

 ∑
u,v∈V ∗

11Au11Av


= E

 ∑
u,v∈V ∗:Cu∩Cv ̸=∅

11Au11Av +
∑

u,v∈V ∗:Cu∩Cv=∅

11Au11Av


= E

∑
u∈V ∗

11Au

∑
v∈V ∗:Cu∩Cv ̸=∅

11Av +
∑

u,v∈V ∗:Cu∩Cv=∅

11Au11Av


≤ E

∑
u∈V ∗

11Au(K + 2) +
∑

u,v∈V ∗:Cu∩Cv=∅

11Au11Av


= (K + 2)E[Y ] + E

 ∑
u,v∈V ∗:Cu∩Cv=∅

11Au11Av

 ,
where to obtain the inequality above we used the fact that for each node u, when the event Au

holds, the degree of Cu is at most K and so Cu ∩ Cv ̸= ∅ happens at most for (K + 2) nodes v.
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Indeed, each Cv consists of v and another node of the graph. A simple analysis shows that such

a v either belongs to Cu (two possibilities) or is among the neighbors of Cu (at most K choices).

Moreover, for any pair of vertices u, v ∈ V ∗, such that Cu ∩ Cv = ∅, conditioning on Au

does not have much effect on the asymptotic of the degree distribution. Indeed, by the coupling

argument of Section 2.6.2, we have for u, v ∈ V ∗ such that Cu ∩ Cv = ∅,

P(Av | Au) = P(Ev | Au)P(E ′
v | Au) = P(Ev)P(E ′

v | Au)

≥ P
(
Exp(dmin) ≥ sn

)
P
(
D

(n) ≤ dmin − 1 +K
)

where D
(n)

is a random variable with distribution π(n). Similarly, we have

P(Av | Au) ≤ P(Exp(dmin) ≥ sn)P(D(n) ≤ dmin − 1 +K),

where D(n) is a random variable with distribution π(n). We infer that

P(Av | Au) = (1 ± o(1))y n−1+ϵ,

and then using the estimate P(Av) = (1±o(1))ynϵ−1 we obtained above, we obtain (conditioned

on Cu ∩ Cv = ∅)

P(Av ∩Au) = (1 ± o(1))P(Au)P(Av).

This shows that

E

 ∑
u,v∈V ∗:Cu∩Cv=∅

11Au11Av

 ≤ (1 + o(1))
∑

u,v∈V ∗

P(Au)P(Av)

= (1 + o(1))E[Y ]2.

Hence, we have

Var[Y ] = E[Y 2] − E[Y ]2 ≤ (K + 2)E[Y ] + o(E[Y ]2) = o(E[Y ]2).

This finishes the proof of the fact that Y ≥ 2
3pdmin

nϵ with high probability.

We consider first the flooding, and obtain the corresponding lower bound. Let Y ′ denote

the number of good vertices that are at distance at most (1 − ϵ)sn + (1−ϵ)
ν−1 log n from a vertex a

(chosen uniformly at random). It is clear that the lower bound follows by showing that Y ′ < Y

with high probability, i.e., Y − Y ′ > 0 w.h.p. To show this, we will bound the expected value of

Y ′ and use Markov’s inequality.
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Since by Condition 1.17, V ∗ has size linear in n by applying Proposition 2.26, we obtain that

for a uniformly chosen vertex u ∈ V ∗, conditioning on Au, we have P(Ha,u) = 1 − o(1). Indeed,

the two events Ha,u and Eu are independent, and conditioning on E ′
u is the same as conditioning

on deg(Cu) ≤ K = O(1). Therefore, for a uniformly chosen vertex u in V ∗, we have

P
(
Au ∩Hc

a,u

)
= o(P(Au)),

where Hc
a,i denotes the complementary event of Ha,i, i.e., the event that Ha,i does not occur.

Thus, a straightforward calculation shows that

E[Y ′] = o(E[Y ]) = o(nϵ).

By Markov’s inequality, we conclude that Y ′ ≤ 1
3pdmin

nϵ w.h.p., and hence Y −Y ′ is w.h.p. posi-

tive. This implies the existence of a vertex u whose distance from a is at least
(

1
ν−1 + 1

dmin

)
(1−

ϵ) log n. Hence for any ϵ > 0 we have w.h.p.

floodw(Gn) ≥ max
u∈V ∗

distw(a, u) ≥
(

1

ν − 1
+

1

dmin

)
(1 − ϵ) log n.

We now turn to the proof of the lower bound for the (weighted) diameter of the graph. The

proof will follows the same strategy as for the flooding, but this time we need to consider the

pairs of good vertices. Let R denote the number of pairs of distinct good vertices. Recall we

proved above that w.h.p. Y ≥ 2
3E[Y ]. Thus,

R = Y (Y − 1) ≥ 2E[Y ]

3
(
2E[Y ]

3
− 1) >

1

4
E[Y ]2.

The probabilities that u and v are both good and Hu,v does not happen can be bounded as

follows.

P
(
Au ∩Av ∩Hc

u,v

)
= P(Au ∩Av)P(Hc

u,v | Au, Av)

= P(Au ∩Av)P
(
Hc

u,v | deg(Cu) ≤ K, deg(Cv) ≤ K
)

(We used the independence of Hu,v and Eu and Ev)

= o(P(Au ∩Av)). (2.51)

The last equality follows from Proposition 2.26, since Cu and Cv are of degree O(1).

To conclude, consider R′ the number of pairs of good vertices that are at distance at most

(1 − ϵ)(2sn + logn
ν−1 ). By using Equation (2.51), we have ER′ = o(E[Y ]2). Applying Markov’s
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inequality, we obtain that w.h.p. R′ ≤ 1
6(E[Y ])2, and thus, R − R′ is w.h.p positive. This

implies that for any ϵ > 0, we have w.h.p.

diamw(Gn) ≥ max
u,v∈V ∗

distw(u, v) ≥
(

1

ν − 1
+

2

dmin

)
(1 − ϵ) log n.

Proof of the lower bound in the case dmin = 2. Let V ∗ be the set of vertices with degree

two. Again we call a vertex u in V ∗ good if both the events Eu and E ′
u hold. Recall the definition

of the two events

Eu :=
{
T u(1) ≥ (1 − ϵ)sn

}
, and (2.52)

E ′
u := {deg(Cu) ≤ K} . (2.53)

where in this case we choose K in such a way that

y := P
(
D̂ ≤ 1 +K | D̂ ≥ 2

)
> 0. (2.54)

The random variable D̂ has the size-biased distribution {qk}. For a vertex u of degree two, we

denote as in the previous case by Au the event that u is good, and define Y :=
∑

u 11Au to be

the number of good vertices. The strategy of the proof will be the same as in the previous case,

the details change. So we will obtains bounds for the expected value and the variance of Y , and

then use the second moment method to show that w.h.p Y = Ω(nϵ). The rest of the proof will

be similar to the case dmin ≥ 3 (based as before on the use of Proposition 2.26).

Consider the exploration process defined in Section 2.6.1, starting from a node u ∈ V ∗.

At the beginning, each step of the exploration process is an exponential with parameter two

(since there are two yet-unmatched half-edges adjacent to the explored vertices). In each step,

the probability that the new half-edge of the list L does not match to the other half-edge of L

(which of course corresponds to the case that u is not in the giant component) is at least 1−1/n.

This follows by observing that there are at least n yet-unmatched half-edges (by ν > 1), and by

using Lemma 2.25 (which says that before M log n steps the exploration process meets a vertex

of forward-degree at least two). By the forward-degree coupling arguments of Section 2.6.2, the

probability that a new matched node be of forward-degree one is at least π
(n)
1 . This shows that,

with probability at least (1−1/n)π
(n)
1 the exploration process adds a new node of forward-degree

one. This shows that the first step in the exploration process a vertex of forward-degree at least
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two is added will be stochastically bounded below by a geometric random variable of parameter

(1 − 1/n)π
(n)
1 . Each step takes rate two exponential time. Therefore,

P(Eu) = P(T u(1) ≥ (1 − ϵ)sn) ≥ P
(

Exp
(

2
(

1 − (1 − 1/n)π
(n)
1

))
≥ (1 − ϵ)sn

)
.

In the last inequality we used the fact that a sum of a geometric (with parameter π) number

of independent exponential random variables of rate µ is distributed as an exponential random

variable of rate (1 − π)µ. Note that this in particular shows that

P(Eu) ≥ (1 − o(1)) exp(−2(1 − q1)(1 − ϵ)sn) = (1 − o(1))nϵ−1.

By the coupling arguments of Section 2.6.2 (and by using Lemma 2.25), similar to the

previous case dmin ≥ 3, we have

P(E ′
u | Eu) = (1 ± o(1))y.

We conclude that

P(Au) = P(E ′
u | Eu)P(Eu) ≥ (1 ± o(1))y nϵ−1.

This shows, as before, that

E[Y ] =
∑
u∈V ∗

P(Au) ≥ (1 ± o(1)) y p2 n
ϵ.

Moreover, for any pair of vertices u, v ∈ V ∗ such that Cu ∩Cv = ∅, conditioning on Au does

not have much effect on the asymptotic of the degree distribution (by Lemma 2.25 the size of

each component Cu is at most M log n), and hence, we deduce again, by the coupling argument

of Section 2.6.2, that for u and v such that Cu ∩ Cv = ∅,

P(Av ∩Au) = (1 ± o(1))P(Au)P(Av).
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We infer as before,

Var(Y ) = E[Y 2] − E[Y ]2 = E

 ∑
u,v∈V ∗

11Au11Av

− E[Y ]2

= E

 ∑
u,v∈V ∗:Cu∩Cv ̸=∅

11Au11Av +
∑

u,v∈V ∗:Cu∩Cv=∅

11Au11Av

− E[Y ]2

= E

∑
u∈V ∗

11Au

∑
v∈V ∗:Cu∩Cv ̸=∅

11Av +
∑

u,v∈V ∗:Cu∩Cv=∅

11Au11Av

− E[Y ]2

≤ (K + 1)(M log n) E[Y ] + E

 ∑
u,v∈V ∗:Cu∩Cv=∅

11Au11Av

− E[Y ]2 (By Lemma 2.25)

= o(E[Y ]2).

In the inequality above, we used Lemma 2.25 to bound w.h.p. the size of all Cw by M log n (for

some large enough M) for any node w in the graph, and used the fact that if the event Au holds,

then there are at most K edges out-going from Cu. Each of the vertices v with the property that

Cu ∩Cv ̸= ∅ should be either already on Cu or connected with a path consisting only of vertices

of degree two to Cu (in which case, this path should belong to Cv). A simple analysis then shows

that the number of nodes v with the property that Cu ∩Cv ̸= ∅ is bounded by (K + 1)M log n,

and the inequality follows. The rest of the proof follows by using Proposition 2.26, similar to

the case dmin ≥ 3.

Proof of the lower bound in the case dmin = 1. Consider the 2-core algorithm, and stop

the process the first time the number of nodes of degree one drops below n1−ϵ/2. Let V ∗ be

the set of all nodes of degree one at this time. We denote by G̃n(V ∗) the graph constructed

by configuration model on the set of remaining nodes (this is indeed the V ∗-augmented 2-core).

Observe that proving the lower bound on the graph G̃n(V ∗) gives us the lower bound on Gn.

Since |V ∗| = o(n/ log n), and the 2-core has linear size in n, w.h.p. the degree sequence of

G̃n(V ∗) has the same asymptotic as the degree sequence in the 2-core of Gn (see Section 2.5,

Lemma 2.8 for more details). In particular, we showed in Section 2.5 that for the size-biased

degree sequence of the 2-core’s degree distribution, we have q̃1 = β∗, and for its mean, we have

ν̃ = ν.

Repeating the coupling arguments of Section 2.6.2 and defining π̃
(n)

(similar to the definition
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of π(n)) for the degree sequence of G̃n(V ∗), we infer that π̃1
(n) → β∗.

Similar as before, call a vertex u in V ∗ good if both the events Eu and E ′
u hold. Recall the

definition of the two events

Eu :=
{
T u(1) ≥ (1 − ϵ)sn

}
, and (2.55)

E ′
u := {deg(Cu) ≤ K} . (2.56)

here the constant K ≥ 2 is chosen with the property that q̃K > 0 (q̃ is the size-biased probability

mass function corresponding to the 2-core, c.f. Section 2.5).

Note that in this case sn = logn
(1−β∗)

. Consider the exploration process starting from a node

u ∈ V ∗. At the beginning, each step of the exploration process is an exponential of rate one,

and the probability that each new matched node be of forward-degree exactly one is at least

π̃
(n)
1 . Similar to the case of dmin = 2, we obtain

P(Au) ≥ (1 ± o(1))q̃K P
(

Exp
(

1 − π̃
(n)
1

)
≥ (1 − ϵ)sn

)
= (1 ± o(1))q̃K exp(−(1 − β∗)(1 − ϵ)sn)

= (1 ± o(1))q̃K n−1+ϵ.

This shows that

E[Y ] =
∑
u∈V ∗

P(Au) ≥ n1−ϵ/2(1 ± o(1))q̃K n−1+ϵ = (1 ± o(1))q̃Kn
ϵ/2,

Similarly, we obtain that Var(Y ) = o(E[Y ]2), and the rest of the proof follows similarly to the

precedent cases by using Proposition 2.26 for G̃n(V ∗). Note that in G̃n(V ∗), the number of

vertices of degree one is o(n) = o(|G̃n(V ∗)|) and thus, Proposition 2.26 can be applied.

At the present we are only left to prove Proposition 2.26.

2.8.1 Proof of Proposition 2.26

In this section we present the proof of Proposition 2.26. It is shown in [110, 129] (see Theo-

rem 1.24 in Chapter 1) that the giant component of a random graph G(n, (di)
n
1 ) for (di)

n
1 satis-

fying Condition 1.17 contains w.h.p. all but o(n) vertices (since ν > 1 and u
(n)
0 + u

(n)
1 = o(n)).

This immediately shows that P(distw(Ca, Cb) <∞) = 1 − o(1). Define tn := 1−ϵ
2(ν−1) log n. So to

prove the proposition, we need to prove that distw(Ca, Cb) is lower bounded by tn w.h.p. in the

case where deg(Cb) = O(1) and either deg(Ca) = O(1) or a is chosen uniformly at random.
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In the case where a is chosen uniformly at random, it is easy to deduce, by using Markov’s

inequality, that we have w.h.p. deg(Ca) ≤ log n. Indeed, this is true since deg(Ca) is asymptot-

ically distributed as
(
D + D̂ − 1 | D̂ ≥ 2

)
, where D̂ is a random variable with the size-biased

distribution, and D is independent of D̂ with the degree distribution {pk}. (To show this, one

can use the coupling argument of Section 2.6.2 to bound deg(Ca) stochastically from above.)

And, since this latter random variable has finite moment (by Condition 1.17), by applying

Markov’s inequality, we obtain w.h.p. deg(Ca) ≤ log n. This shows that in both cases stated in

the proposition, we can assume that deg(Cb) = O(1) and deg(Ca) ≤ log n.

We now consider the exploration process defined in Section 2.6.1 starting from Ca, i.e., we

start the exploration process with B = Ca, and apply the steps one and two of the process. In a

similar way we defined Ta(i), we define TCa(i) to be the time of the i-th step in this continuous-

time exploration process. Similarly, let d̂Ca(i) be the forward-degree of the vertex added at i-th

exploration step for all i ≥ 1, and define

ŜCa(i) := deg(Ca) + d̂Ca(1) + ...+ d̂Ca(i) − i, (2.57)

and define SCa(i) similarly, so that we have SCa(i) ≤ ŜCa(i). Note that TCa(i) obviously satisfies

TCa(i+ 1) − TCa(i) = Exp (SCa(i)) ≥st Yi ∼ Exp
(
ŜCa(i)

)
,

where the random variables Yi are all independent.

Also, we infer (by Lemma 2.11) that

ŜCa(i) ≤st log n+
i∑

j=1

D
(n)
j − i, (2.58)

where D
(n)
j are i.i.d with distribution π(n).

Let ν(n) be the expected value of D
(n)
1 which is

ν(n) :=
∑
k

kπ
(n)
k ,

and define zn =
√
n/ log n. We will show later that the two growing balls in the exploration

processes started from Ca and Cb, for a and b as in the proposition, will not intersect w.h.p.

provided that they are of size less than zn. We now prove that TCa(zn) ≥ tn with high probability.
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For this, let us define

T ′(k) ∼
k∑

i=1

Exp

log n+
i∑

j=1

D
(n)
j − i

 ,

where all the exponential variables in the above sum are independent, such that by the above

arguments, we have

TCa(zn) ≥st T
′(zn).

We need the following lemma. (We define Exp(s) := +∞ for s ≤ 0.)

Lemma 2.27. Let X1, ..., Xt be a random process adapted to a filtration F0 = σ[Ø],F1, ...,Ft,

and let µi = EXi, Σi = X1 + ...+Xi, Λi = µ1 + ...+ µi. Let Yi ∼ Exp(Σi), and Zi ∼ Exp(Λi),

where all exponential variables are independent. Then we have

Y1 + ...+ Yt ≥st Z1 + ...+ Zt.

Proof. By Jensen’s inequality, it is easy to see that for positive random variable X, we have

Exp(X) ≥st Exp(EX).

Then by induction, it suffices to prove that for a pair of random variables X1, X2 we have

Y1 + Y2 ≥st Z1 + Z2. We have

P(Y1 + Y2 > s) = EX1 [P(Y1 + Y2 > s|X1)]

≥ EX1 [P(Exp(X1) + Exp(X1 + µ2) > s)]

≥ P(Z1 + Z2 > s).

We infer by Lemma 2.27,

T ′(zn) ≥st

zn∑
i=0

Exp
(

log n+ (ν(n) − 1)i
)

=: T ∗(zn),

where all exponential variables are independent.
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We now let bn := log n− (ν(n) − 1), so that we have

P(T ∗(zn) ≤ t) ≤
∫
∑

xi≤t
e−

∑zn
i=1((ν

(n)−1)i+bn)xidx1...dxzn

zn∏
i=1

((ν(n) − 1)i+ bn)

=

∫
0≤y1≤···≤yzn≤t

e−(ν(n)−1)
∑zn

i=1 yie−bnyzndy1...dyzn

zn∏
i=1

((ν(n) − 1)i+ bn),

where yk =
∑k−1

i=0 xzn−i. Letting y play the role of yzn , and accounting for all permutations over

y1, ..., yzn−1 (giving each such variable the range [0, y]), we obtain

P(T ∗(zn) ≤ t) ≤ (ν(n) − 1)zn

∏zn
i=1(i+ bn

ν(n)−1
)

(zn − 1)!

.

∫ t

0
e−(ν(n)−1+bn)y

(∫
[0,y]zn−1

e−(ν(n)−1)
∑zn−1

i=1 yidy1...dyzn−1

)
dy

= zn

∏zn
i=1(i+ bn

ν(n)−1
)

zn!
(ν(n) − 1)

.

∫ t

0
e−(ν(n)−1+bn)y

(
zn−1∏
i=1

∫ y

0
(ν(n) − 1)e−(ν(n)−1)yidyi

)
dy

= zn

zn∏
i=1

(1 +
bn

(ν(n) − 1)i
)(ν(n) − 1)

.

∫ t

0
e−(ν(n)−1+bn)y

(
1 − e−(ν(n)−1)y

)zn−1
dy

≤ cz
bn

ν(n)−1
+1

n (ν(n) − 1)

∫ t

0
e−(ν(n)−1+bn)y

(
1 − e−(ν(n)−1)y

)zn−1
dy,

where c > 0 is an absolute constant. Recall that tn = 1−ϵ
2(ν−1) log n, and zn =

√
n/ log n. Now we

use the fact that
(

1 − e−(ν(n)−1)y
)zn−1

≤ e−nα
, for some α > 0 and for all 0 ≤ y ≤ tn. We infer

P(T ∗(zn) ≤ tn) ≤ c(ν(n) − 1)z
bn

ν(n)−1
+1

n

∫ tn

0
e−nα

dy = o(n−4),

since bn = O(log n). Hence, we have w.h.p.

|Bw(Ca, tn)| ≤ zn.

(Here naturally, for W ⊆ V , we let Bw(W, t) = {b, such that distw(W, b) ≤ t}.)
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Similarly for b, and exposing Bw(Cb, tn), again w.h.p we obtain a set of size at most zn. Now

remark that, because each matching is uniform among the remaining half-edges, the probability

of hitting Bw(Ca, tn) is at most ŜCa(zn)/n.

Let ϵn := log log n. By Markov’s inequality we have

P
(
ŜCa(zn) ≥ znϵn

)
≤ EŜCa(zn)/znϵn

=
K + (ν(n) − 1)(zn + λn)

znϵn
= o(1).

We conclude

P
(
Bw(Ca, tn) ∩Bw(Cb, tn) ̸= ∅

)
≤ P

(
|Bw(Ca, tn)| > zn

)
+ P

(
|Bw(Cb, tn)| > zn

)
+ P

(
ŜCa(zn) ≥ znϵn

)
+ ϵnz

2
n/n

= o(1).

This completes the proof of Proposition 2.26.

2.9 Proof of Corollary 2.6

First we prove that for an r-regular graph G = (V,E), the dynamic evolution of informed nodes

in continuous-time broadcast when each node is endowed with a Poisson process with rate one

corresponds exactly to the flooding time with exponential random weights on edges with mean

r. For a node a ∈ V , let I(a, t) denote the set of informed nodes at time t when the broadcast

process is started from a. Indeed, using a coupling argument, we will show that the random map

I(a, .) from [0,∞) to subsets of V has the same law as Bw(a, .) when the weights are exponentials

with mean r. To this aim, from the asynchronous broadcasting model, we construct weights on

the edges of the graph and show that these weights are independent exponential with mean r.

For v ∈ V , let T (v) denote the time at which the node v becomes informed in the asyn-

chronous broadcast model. For an edge {u, v} ∈ E, let τi(u, v) be the i-th time the node u

contacts the node v. The weight of the edge e = {u, v} is defined as follows. Without loss of

generality assume that T (u) < T (v), i.e., if u is informed before v, then

we := min
i
{ τi(u, v) − T (u) | τi(u, v) > T (u) }.
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Thanks to the memoryless property of the Poisson process, {we, e ∈ E} are independent

exponential random variables with mean r. Indeed since u has r neighbors, the waiting time

(after T (u)) until the node u contacts v is distributed as a sum of a geometric (with parameter

1/r) number of independent exponential random variables with parameter one. Now recall that

a sum of a geometric (with parameter s) number of independent exponential random variables

with parameter µ is distributed as an exponential random variable with parameter (1−s)µ (i.e.,

with mean 1/(1 − s)µ).

In addition, it is easy to see that we have I(a, t) = Bw(a, t) for all t ≥ 0. Hence the

asynchronous broadcast time corresponds to the flooding time with exponential weights with

mean r. We conclude the proof by using Corollary 2.4,

ABT(G) = r

(
1

r − 2
+

1

r

)
log n+ op(log n)

= 2

(
r − 1

r − 2

)
log n+ op(log n).

Discussion

In this chapter, we have studied the impact of the i.i.d. exponential random edge weights on

distances in configuration model. It would be of interest to study the effect of weights even

further, for example, by studying the case where the weights are i.i.d. random variables with

distribution equal to Es, where E is an exponential random variable with mean 1 and s ∈ [0; 1).

The case s = 0 corresponds to the graph distance as studied in [94, 69], while the case s = 1

corresponds to the case with i.i.d. exponential weights as studied here, and in [24]. (e.g., see

[22] for the similar results in the case of complete graphs). These and some other related issues

are subject of a future work we are currently investigating.



Chapter 3

Bootstrap Percolation, Diffusion,

and Cascades

Abstract. In this chapter, we consider diffusion in random graphs with given vertex degrees.

Our diffusion model can be viewed as a variant of a cellular automaton growth process: assume

that each node can be in one of the two possible states, inactive or active. The parameters of

the model are two given functions θ : N → N and α : N → [0, 1]. At the beginning of the process,

each node v of degree dv becomes active with probability α(dv) independently of the other vertices.

Presence of the active vertices triggers a percolation process: if a node v is active, it remains

active forever. And if it is inactive, it will become active when at least θ(dv) of its neighbors

are active. In the case where α(d) = α and θ(d) = θ, for each d ∈ N, our diffusion model is

equivalent to what is called bootstrap percolation. Our main result is a theorem which enables

us to find the final proportion of the active vertices in the asymptotic case, i.e., when n → ∞.

This is done via analysis of the process on the multigraph counterpart of the graph model.
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3.1 Introduction

There is a vast literature on epidemics on complex networks (see for example [54, 55, 134,

121, 122]). The diffusion model we consider in this chapter is a generalization of bootstrap

percolation in an arbitrary graph (modeling a given network). Let G = (V,E) be a connected

graph. Given two vertices i and j, we write i ∼ j if {i, j} ∈ E. The threshold associated to a

node i is θ(di), where di is the degree of i, and θ : N → N is given fixed function. Assume that

each node can be in one of the two possible states: inactive or active. Let α : N → [0, 1] be a

fixed given function. At time 0, each node i becomes active with probability α(di) independently

of all the other vertices. At time t ∈ N, the state of each node i will be updated according to

a deterministic process: if a node i was active at time t − 1, it will remains active at time t.

Otherwise, i will become active if at least θ(di) of its neighbors were active at time t− 1.

In the case where α(d) = α and θ(d) = θ, for each d ∈ N, our diffusion model is equivalent to

what is called bootstrap percolation. This model has a rich history in statistical physics, mostly

on G = Zd and finite boxes. Bootstrap percolation serves as a useful model to describe a growing

list of complex phenomena, including neuronal activity [35, 43, 147, 80], jamming transitions

and glassy dynamics [81, 143, 148], and magnetic systems [142]. Bootstrap percolation was

first mentioned and studied in the statistical physics literature by Chalupa et al. in [40]. The

problem of complete occupation on Z2 was solved by van Enter in [61]. A short physics survey

is [4]. Bootstrap percolation also has connections to the dynamics of the Ising model at zero

temperature [71]. Some further references for bootstrap percolation on various graphs are Cerf

and Manzo [39], Holroyd [97] (grids); Balogh and Bollobás [14] (hypercube); Balogh, Peres and

Pete [15], Fontes and Schonmann [70] (infinite trees); Balogh and Pittel [16] (random regular

graphs); and recently Janson [106] (Erdős-Rényi random graphs).
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Let G be a graph with n nodes, i.e., |V | = n. Let A denote the adjacency matrix of G, with

Aij = 1 if i ∼ j, and Aij = 0 otherwise. The state of the network at time t can be described

by the vector (Xt(i))
n
i=1: Xt(i) = 1 if the node i is active at time t, and Xt(i) = 0 otherwise.

Remark that X0(i) is a Bernoulli random variable with parameter α(di). The evolution of this

vector at time t+ 1 follows the following functional equation, i.e., at each time step t+ 1, each

node v applies:

Xt+1(i) = Xt(i) + (1 −Xt(i))11

∑
j

AijXt(j) ≥ θ(di)

 , (3.1)

where 11 (Ξ) denotes the indicator of an event Ξ; this is 1 if Ξ holds and 0 otherwise.

From the definition, Xt(i) is non-decreasing. Indeed, the equation (3.1) implies again that

Xt(i+ 1) ≥ Xt(i). Define Φ(n)(α, θ, t) as

Φ(n)(α, θ, t) := n−1
n∑

j=1

E[Xt(j)].

We are interested in finding the asymptotic value when n→ ∞, of

Φ(n)(α, θ) := lim
t→∞

Φ(n)(α, θ, t)

in the case of random graphs with given vertex degrees (e.g., see Section 1.4).

Remark 3.1. We have to emphasize that the results of this chapter can be as well applied

to some other random graphs models by conditioning on the vertex degrees. For example, for

the Erdős-Rényi random graph ER(n, p), where every edge is present with probability p, with

np→ λ ∈ (0,∞), the assumptions hold with (pk) a Poisson distribution with mean λ:

pk = e−λλ
k

k!
.

3.1.1 Main results

We now present the main results of this chapter. Consider a random graph G(n, (di)
n
1 ), where

the degree sequence (di)
n
1 satisfies Condition 1.17. Let D be a random variable with integer

values, and with distribution P(D = r) = pr, r ∈ N. The two functions α : N → [0, 1] and

θ : N → N are given as before. We define the function fα,θ : [0, 1] → R as follows

fα,θ(y) := λy2 − y E
[ (

1 − α(D)
)
D 11 ( Bin(D − 1, 1 − y) < θ(D))

]
. (3.2)
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Let y∗ = y∗α,θ be the largest solution to fα,θ(y) = 0, i.e.,

y∗ := sup { y ∈ [0, 1] | fα,θ(y) = 0 }.

Remark that such y∗ exists because y = 0 is a solution, and fα,θ is continuous.

The main result of this chapter is the following.

Theorem 3.2. Consider a random graph G(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies

Condition 1.17. Then we have:

1. If y∗ = 0, i.e., if fα,θ(y) > 0 for all y ∈ (0, 1], then Φ(n)(α, θ) = 1 − op(1).

2. If y∗ > 0 and furthermore y∗ is not a local minimum point of fα,θ(y), then

Φ(n)(α, θ) = 1 − E [ (1 − α(D)) 11 ( Bin(D, 1 − y∗) < θ(D)) ] + op(1).

It is easy to see that in the case y∗ = 0, we necessarily have θ(d) < d for all d ∈ N with

pd > 0 and α(d) < 1.

We now look at the diffusion with one initial active node. Let us call the following condition

the cascade condition:

E [D ] < E
[
D(D − 1)11(θ(D)=1)

]
. (3.3)

The second theorem of this chapter is the following:

Theorem 3.3 (The cascade condition). Consider a random graph G(n, (di)
n
1 ) where the

degree sequence (di)
n
1 satisfies Condition 1.17.

• If the cascade condition (3.3) is satisfied, then there exists w.h.p. a single node v which

can trigger a global cascade, i.e., v can activate a strictly positive fraction of the total

population w.h.p.

• If E [D ] > E
[
D(D − 1)11(θ(D)=1)

]
, then for any k = o(n), we have

|C(1, 2, ..., k)| = op(n),

where for W ⊆ V , C(W ) denote the final active nodes when we start the diffusion with

initial active nodes W .
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Remark 3.4. We note that in the case where θ(d) = θd, Watts [151] obtained the same condition

by a heuristic argument validated through simulations. Our theorem provides as a very special

case a mathematical proof of his heuristic results.

In the rest of this section, we provide some of the applications of our main theorems above.

But let us first briefly explain the methods used to derive Theorems 3.2 and 3.3. The base of

our approach is some standard techniques similar to those used by Balogh and Pittel [16] for the

special d-regular case problem, Cain and Wormald [38] for the k-core problem and Molloy and

Reed [129] for the giant component problem. This means we consider the diffusion process on

the random configuration model and describe the dynamics of the diffusion by a Markov chain.

The proof of Theorem 3.2 is mainly based on a method introduced by Wormald in [154] for the

analysis of a discrete random process by using differential equations (see Appendix A.4 for more

details). However, our model is more general and new difficulties arise in treating the Markov

chain and proving the convergence results. One special difficulty is that, contrary to [16], here

the number of variables is a function of n (and so is not constant). The proof of Theorem 3.3 is

based on Theorem 3.2 and a theorem of Janson [103] (Theorem 1.30 in Chapter 1) for the study

of percolation in a random graph with given vertex degrees. We refer to Section 3.4.3 for more

details.

3.1.2 The k-core in random graphs with given degree sequence

As discussed in Section 1.4.2, the k-core of a given graph G, denoted by Corek(G), is the largest

induced subgraph of G with minimum vertex degree at least k. Let Core
(n)
k be the k-core of the

graph G(n, (di)
n
1 ).

The existence of a large k-core in a random graph with a given degree sequence has been

studied by several authors (see Section 1.4.2). Theorem 3.2 allows us to unify all these results

into a single theorem. In fact by assuming the functions α and θ to be equal to α̂(d) = 11 (d < k)

and θ̂(d) = (d− k + 1)+ = (d− k + 1)11(d ≥ k) respectively, we obtain

Core
(n)
k

n
= 1 − Φ(n)(α̂, θ̂).

Let ŷ = y∗
α̂,θ̂

be the largest solution to fα̂,θ̂(y) = 0.

Corollary 3.5. Consider a random graph G(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies

Condition 1.17. Let k ≥ 2 be fixed, and let Core
(n)
k be the k-core of G(n, (di)

n
1 ). Then we have:
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1. If ŷ = 0, i.e., if fα̂,θ̂(y) > 0 for all y ∈ (0, 1], then w.h.p. Core
(n)
k = o(n).

2. If ŷ > 0 and furthermore ŷ is not a local minimum point of fα̂,θ̂(y), then w.h.p.

Core
(n)
k = n P ( Bin(D, ŷ) ≥ k ) + o(n).

3.1.3 Bootstrap percolation on random regular graphs

In the case of random regular graphs, i.e., in the case di = d for all i, our diffusion model is

equivalent to bootstrap percolation. Bootstrap percolation on the random regular graph G(n, d)

with fixed vertex degree d was studied by Balogh and Pittel in [16]. By Theorem 3.2 we can

recover a large part of their results. Let A
(n)
f be the final set of active vertices. We find that

Corollary 3.6 (Balogh-Pittel [16]). Let the three parameters α, θ ∈ [0, 1] and d ≥ 1 be given

with 1 ≤ θ ≤ d − 1. Consider bootstrap percolation on the random d-regular graph G(n, d) in

which each vertex is initially active independently at random with probability α and the threshold

is θ. Let αc be defined by

αc := 1 − inf
0<y≤1

y

P
(
Bin(d− 1, 1 − y) ≤ θ − 1

) .
We have

(i) If α > αc, then |A(n)
f | = n− op(n).

(ii) If α < αc, then w.h.p. a positive proportion of the vertices remain inactive. More precisely,

if y∗ = y∗(α) is the largest y ≤ 1 such that P (Bin(d− 1, 1 − y) ≤ θ − 1) /y = (1 − α)−1,

then
|A(n)

f |
n

p→ 1 − (1 − α)P
(

Bin(d, 1 − y∗) ≤ θ − 1
)
< 1.

Proof. It remains only to show that in case (ii), y∗ is not a local minimum point of

fα,θ(y) = dy2
(
1 − (1 − α)

P
(
Bin(d− 1, 1 − y) ≤ θ − 1

)
y

)
.

In fact, P
(

Bin(d − 1, 1 − y) ≤ θ − 1
)
/y is decreasing in y when θ = d − 1 and has only one

minimum point when θ < d−1 (see [16] for details). Thus for θ < d−1, the only local minimum

point is the global minimum point ŷ with P
(
Bin(d − 1, 1 − ŷ) ≤ θ − 1

)
/ŷ = (1 − αc)

−1 and

otherwise, when θ = d− 1, there is no local minimum point.
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In this case, Balogh and Pittel [16] have also studied the threshold in greater detail by allowing

α to depend on n; we have

• if n1/2(α(n) − αc) → ∞, then w.h.p. |A(n)
f | = n;

• if n1/2(αc − α(n)) → ∞, then w.h.p. |A(n)
f | < n and furthermore

|A(n)
f | = n

(
1 − (1 − α(n))P

(
Bin(d, 1 − y∗) ≤ θ − 1

) )
+Op(n

1/2(αc − α(n))−1/2).

It would be interesting to generalize these results to our case. Note that Balogh and Pittel [16]

do not use Wormald’s theorem. Indeed they analyze directly the system of differential equations

via exponential supermartingales by using its integrals to show that the percolation process

undergoes relatively small fluctuations around the deterministic trajectory.

3.1.4 Contagion threshold for random networks

A famous example of diffusion is given by network coordination game proposed by Morris [130],

that we briefly explain below. Other references in this area are [115, 119, 100].

Consider the following game-theoretic diffusion model: At time t, each node plays a 2 × 2

game with each neighbor and chooses an action from the space S = {A,B}. Payoffs from

each interaction in each period are given by a function π(s, s′) where s, s′ ∈ S, and they are

summarized in the following symmetric matrix:

(
x w

z y

)
. In other words, π(A,A) = x,

π(A,B) = w, π(B,A) = z and π(B,B) = y. Assume that y > w and x > z, which basically

means that the game is a coordination game (whose strict Nash equilibrium are (A,A) and

(B,B)). An individual’s payoff is simply the sum of the payoffs obtained across all the bilateral

games in which (s)he is involved.

Then if the degree of node i is di, and nBi is her number of neighbors playing B, then the

payoff to i from choosing A is

Πi(A) = wnBi + x(di − nBi ),

while the payoff from choosing B is

Πi(B) = ynBi + z(di − nBi ).
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This implies that, if the proportion of neighbors choosing B is higher than

q :=
x− z

x− z + y − w

then i’s best response is to choose B. Otherwise i chooses A.

A number of qualitative insights can be derived from this simple diffusion model. Clearly,

a network where all nodes play A is an equilibrium of the game as in the state where all nodes

play B. Consider a network where all nodes initially play A. If a small number of nodes are

forced to adopt strategy B and we apply best-response updates to other nodes in the network,

then these nodes will be repeatedly applying the following rule: switch to B if enough of your

neighbors have already adopted B. There can be a cascading sequence of nodes switching to

B such that a network-wide equilibrium is reached in the limit. This equilibrium may involve

uniformity with all nodes adopting B or it may involve coexistence, with the nodes partitioned

into a set adopting B and a set sticking to A. In [130], Morris considers the case of an infinite

graph G and provides graph-theoretic characterizations of the different types of equilibrium that

can arise.

We now compute the contagion threshold for random networks. We define the contagion

threshold of the graph to be the maximum q for which a single individual (who adopts B) can

trigger a global cascade, i.e. activate a strictly positive fraction of the total population, with

positive probability. This notion is the natural extension of the contagion threshold defined

in [130] for regular graphs.

Then as a corollary of Theorem 3.3 (by setting θ(d) = ⌈qd⌉) we have:

Corollary 3.7. Consider a random graph G(n, (di)
n
1 ) where the degree sequence (di)

n
1 satisfies

Condition 1.17. Then the contagion threshold qc is given by

qc = sup

q :
∑

2≤r<q−1

r(r − 1)pr > λ

 . (3.4)

We note that in this case, Watts [151] obtained the same condition by a heuristic argument

validated through simulations. Recently in [123], Lelarge analyzes the possible equilibria of this

game and identifies conditions for the coexistence of both strategies. We refer to [123] for more

on this.
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3.1.5 Simulation

We consider the bootstrap percolation model, i.e., where θ(d) = θ, and α(d) = α over all nodes.

We assume a Gaussian distribution for degrees, i.e., we let for k ∈ N;

P(D = k) = exp

(
−(k − k)2

2σ2

)
/Z(k, σ),

where Z(k, σ) is a normalizing constant. We assume k = 50 and σ = 15 based on the experi-

mental results on neural networks [35, 43, 145].

Figure 3.1 shows the three dimensional representation of the final activated nodes

Φ(α, θ) := lim
n→∞

Φ(n)(α, θ)

as a function of α and θ. This shows that both parameter θ and α have transition values, αc

and θc, where the solution changes qualitatively.
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Figure 3.1: The final fraction of activated nodes as a function of α and θ. Here P(D = k) ∼
exp

(
−(k−k)2

2σ2

)
with k = 50 and σ = 15.

Let us assume that θ is fixed. Then there exists a critical value for the fraction of initially

activated nodes (i.e., α) beyond which the global activity jumps to an almost complete activation

of the network while below this critical value the diffusion essentially does not spread. Indeed

as we can see in Figure 3.2, the map α → Φ(α) := limn→∞ Φ(n)(α, θ) exhibits a point of

discontinuity.
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Figure 3.2: The final fraction of activated nodes as a function of α in bootstrap percolation

model. Here P(D = k) ∼ exp
(
−(k−k)2

2σ2

)
with k = 50, σ = 15 and θ = 25.

In the next section we consider the continuous-time version of the bootstrap percolation

model, and we derive a general bound for the fraction of active nodes in terms global graph

properties. Then in Section 3.3 we describe an approximation to the local structure of the graph

by an appropriate branching process, and give a heuristic argument which leads quickly to derive

Theorem 3.2. Then the diffusion process on G∗(n, (di)
n
1 ) is studied in detail. The proof of our

results are based on the use of differential equations for solving discrete random processes, and

this is due to Wormald [154] (This is also discussed in Section A.4). The proofs of our main

results, Theorem 3.2 and Theorem 3.3, are given in Section 3.4.

3.2 Continuous-time Dynamic

We first consider the following continuous-time version of the bootstrap percolation model.

Assume that each non infected node i updates its state at rate one, and it becomes active if∑
j∼iXt(j) > θ. The state at time t is represented by a vector Xt. Denote by A the adjacency

matrix of the graphG, and let λ1(A) be the spectral radius of A, namely, its largest eigenvalue. In

addition we will assume that the graph is connected, and λ1(A) has multiplicity one. Therefore
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we have, X0(i) = Ber(α), for all i ∈ V , and

X(i) : 0 → 1 at rate 11

∑
j

AijXt(j) > θ

 .

Note that 11
(∑

j AijXt(j) > θ
)
≤

∑
j AijXt(j)

θ . We now consider the continuous time Markov

process Zt = (Zt(i))i∈V , with Z0 = X0, and transition rate:

Z(i) : k → k + 1 at rate

∑n
j=1AijZt(j)

θ
,

standard coupling arguments yield Xt ≤st Zt for all t ≥ 0, where X ≤st Z denotes that Z

stochastically dominates X (see Section A.2). This implies that
∑n

i=1 E(Xt(i)) ≤
∑n

i=1 E(Zt(i)).

Moreover, the transition rates of the process Z are such that

dE[Zt]

dt
=
A

θ
E[Zt].

Hence we obtain

E[Zt] = e
t
θ
A E[Z0]. (3.5)

Using Cauchy-Schwartz inequality, we obtain that
∑n

i=1 E(Zt(i)) ≤ ||E(Zt)||2||1||2. Combining

this with (3.5), we have that

Proposition 3.8. Let βt be the proportion of nodes that are active by time t. Then

βt :=

∑n
i=1 E(Xt(i))

n
≤ αe

λ1(A)
θ

t.

Moreover if the G is a regular graph with degree d, then, using the spectral decomposition of the

matrix e
t
θ
A, we have that

βt ≤
α

d
e

d
θ
t.

The above result states that the number of active nodes increases at most exponentially in

time and that the speed is given by λ1(A)
θ . Similar results have been found in [78] in the case of

the Susceptible-Infected-Susceptible (SIS) epidemic.

3.3 Branching Process Approximation

In this section we give a heuristic argument which leads quickly to derive our main result, The-

orem 3.2. Intuitively, it is useful to note that a random graph G∗(n, (di)
n
1 ) under Condition 1.17
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locally behaves like a branching process. Hence we start our analysis by looking at the branching

process. If we start with a given vertex x, then the number of neighbors (the first generation in

the branching process) has distribution pr. This is not true for the second generation. A first

generation vertex with degree k is k times as likely to be chosen as one with degree 1, so the

distribution of the number of children of a first generation vertex is for k ≥ 1: qk−1 = kpk
λ . Recall

that the k − 1 on the left-hand side comes from the fact that we used up one edge connecting

to the vertex. Note that q has finite mean (by Condition 1.17)

ν :=
∑
j

jqj =
1

λ

∞∑
j=1

j(j − 1)pj . (3.6)

For any d > 0, we let Td denote the random rooted tree with a fixed root Ø generated as

follows. First draw an integer k with distribution pk, and connect the root Ø to k offspring.

Then recursively, for each node in the last generation, generate an integer k independently with

distribution qk, and connect the node to k new nodes. This is repeated until the tree has d

generations. Notice that the random infinite tree T∞ is well defined. Now we look at the

contagion process on the infinite tree T∞.

For a node i, we denote by gen(i) ∈ N, the generation of i, i.e., the length of the minimal

path from Ø to i. Also we denote i→ j if i belongs to the children of j, i.e., gen(i) = gen(j) + 1

and j is on the minimal path from Ø to i. For an edge (i, j) with i → j, we denote by Ti→j

the sub-tree of T∞ with root i obtained by the deletion of edge (i, j) from T∞. Now consider

the contagion process in T∞. We encode the initial active population by a vector χ, where

χi = 1 if the node i is active and χi = 0 otherwise. Then χi is a Bernoulli random variable with

parameter α(di) independent of everything else. For a given vector χ, we say that node i ̸= Ø

is infected from Ti→j if the node i is infected in Ti→j with the same threshold and vector χ for

Ti→j as T∞. We denote by Yt(i) the corresponding indicator function with value 1 if i is infected

from Ti→j at time t and 0 otherwise.

Lemma 3.9. We have

Xt+1(Ø) = 1 − (1 − χØ)11

(∑
i∼Ø

Yt(i) < θ(dØ)

)
. (3.7)

Proof. We have

Xt+1(Ø) = 1 − (1 − χØ)11

(∑
i∼Ø

Xt(i) < θ(dØ)

)
,
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and let

Zt+1(Ø) = 1 − (1 − χØ)11

(∑
i∼Ø

Yt(i) < θ(dØ)

)
.

Now we show ∀t ≥ 0 : Xt(Ø) = Zt(Ø) which is clear if χØ = 1. Suppose now that χØ = 0,

hence X0(Ø) = Z0(Ø) = 0. By definition of Y (i) we have ∀i ∼ Ø : Yt(i) ≤ Xt(i) and then

Zt+1(Ø) ≤ Xt+1(Ø). Hence we need to show Zt+1(Ø) ≥ Xt+1(Ø). Suppose it is false and

consider the first time s that the inequality is violated, i.e. Xs(Ø) = 1, Zs(Ø) = 0. Since s is

the first time that it happens we have Xs−2(Ø) = 0 and then by definition of Y (i) we will have

∀i ∼ Ø : Ys−1(i) = Xs−1(i) which implies Xs(Ø) = Zs(Ø).

The representation (3.7) is crucial to our analysis because, thanks to the tree structure, the

random variables (Yt(i), i ∼ Ø) are independent of each other and identically distributed. More

precisely, a simple induction shows that for i ̸= Ø:

Yt+1(i) = 1 − (1 − χi)11

∑
j→i

Yt(j) < θ(di)

 . (3.8)

Note that (3.8) allows to compute all the Yt(i) recursively, starting with Y0(i) = χi. Hence

a simple induction on t shows that the random variables (Yt(i), i ∼ Ø) are independent of

each other. Let D and D̂ be random variables with the distribution P(D = r) = pr, and

P(D̂ = r) = qr. In view of (3.8), it is natural to introduce the following Recursive Distributional

Equation (RDE):

Y
d
= 1 − (1 − χ(D̂ + 1))11

 D̂∑
l=1

Yl < θ(D̂ + 1)

 , (3.9)

where χ(d) is a Bernoulli random variable with parameter α(d), Y and Yl are i.i.d. copies and

all random variables are independent of each others. RDE for the process Y plays a similar role

as the equation µ = Kµ for the stationary distribution of a Markov chain with kernel K, see [9].

Proposition 3.10. Let y = P[Y = 0], where the distribution of Y solves the RDE (3.9). We

have fα,θ(y) = 0 where fα,θ(y) is defined by (3.2). Furthermore the state of the root XØ is a

Bernoulli random variable with parameter 1 − E [(1 − α(D))11(Bin(D, 1 − y) < θ(D))].
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Proof. By taking expectation in (3.9), we get

1 − y = 1 −
∑
d≥0

qd(1 − α(d+ 1))P(Bin(d, 1 − y) < θ(d+ 1))

= 1 −
∑
d≥1

dpd
λ

(1 − α(d))P(Bin(d− 1, 1 − y) < θ(d))

= 1 − E [(1 − α(D))D11(Bin(D − 1, 1 − y) < θ(D))]

λ
.

Then multiplying λy in two sides of the above equation gives fα,θ(y) = 0.

By (3.7), the state of the root follows:

XØ = 1 − (1 − χ(dØ))11

(∑
i∼Ø

Yi < θ(dØ)

)
.

Then taking expectation gives:

E[XØ] = 1 − E [(1 − α(D))11(Bin(D, 1 − y) < θ(D))] ,

and the second part of the proposition follows.

3.4 Diffusion Process in G∗(n, (di)
n
1)

In this section we present the proofs of Theorem 3.2 and Theorem 3.3.

3.4.1 The Markov chain

The aim of this section is to describe the dynamics of the diffusion process as a Markov chain,

which is perfectly tailored for the asymptotic study. We consider diffusion process onG∗(n, (di)
n
1 )

where the sequence (di)
n
1 , satisfies Condition 1.17. Let m(n) :=

∑n
i=1 di denote the number of

half-edges in the configuration model.

We introduce the sets S1, ..., Sn, |Si| = di, representing the vertices 1, . . . , n, respectively. Let

Mn be a uniform random matching on S = ∪iSi which gives us G∗(n, (di)
n
1 ). Let A(0) and I(0)

be the initial sets of active and inactive vertices, respectively. In particular we have

V = A(0)
⊎

I(0).
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Let Si(0) := Si denote the initial set of half-edges hosted by the vertex i. We call the half-

edges of a subset Si(t) active (resp. inactive) if i ∈ A(t) (resp. i ∈ I(t)). We define the following

process: in step 0, we pick a pair (a, b), with a ∈ Si and b ∈ Sj such that i ∈ A(0), and then

delete both a and b from Si and Sj respectively. Recursively, after t steps, we have the set of

(currently) active vertices at step t, A(t), and the set of (currently) inactive vertices at step t,

I(t). We also denote by Si(t) the state of set Si at step t. At step t+ 1, we do the following

• We pick an active half-edge a ∈ Si(t) for i ∈ A(t);

• We identify its partner b : (a, b) ∈Mn;

• And we delete both a and b from the sets Si(t) and Sj(t);

• If j is currently inactive, and b is the θ(dj)-th half-edge deleted from the initial set Sj ,

then j becomes active from this moment on.

The system is described in terms of

• A(n)(t) : the number of half-edges belonging to active vertices at time t;

• I
(n)
d,j (t), 0 ≤ j < θ(d), the number of inactive nodes with degree d, and j deleted half-edges,

i.e., j active neighbors at time t;

• I(n)(t) the number of inactive nodes at time t.

It is easy to see that the following identities hold:

A(n)(t) =
∑

i∈A(t)

|Si(t)|,

I
(n)
d,j (t) = |

{
i ∈ I(t) : di = d, |Si(t)| = d− j

}
|, 0 ≤ j < θ(d),

I(n)(t) =
∑
d

θ(d)−1∑
j=0

I
(n)
d,j (t). (3.10)

Because at each step we delete two half-edges and the number of half-edges at time 0 is m(n),

the number of existing half-edges at time t will be m(n) − 2t and we have

A(n)(t) = m(n) − 2t−
∑
d

∑
j<θ(d)

(d− j)I
(n)
d,j (t). (3.11)
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The process will finish at the stopping time T
(n)
f which is the first time t ∈ N where A(n)(t) =

0. The final number of active vertices will be |A(n)
f | = n − I(n)(T

(n)
f ). By the definition of our

process {
A(n)(t), {I(n)d,j (t)}d,j<θ(d)

}
t≥0

is Markov. We write the transition probabilities of the Markov chain. There are three possibil-

ities for B, the partner of a half-edge e of an active node A at time t+ 1.

1. B is active. The probability of this event is A(n)(t)

m(n)−2t−1
, and we have

A(n)(t+ 1) = A(n)(t) − 2,

I
(n)
d,j (t+ 1) = I

(n)
d,j (t), (0 ≤ j < θ(d)).

2. B is inactive of degree d and the half-edge e is the (k + 1)-th deleted half-edge, and

k + 1 < θ(d). The probability of this event is
(d−k)I

(n)
d,k (t)

m(n)−2t−1
, and we have

A(n)(t+ 1) = A(n)(t) − 1,

I
(n)
d,k (t+ 1) = I

(n)
d,k (t) − 1,

I
(n)
d,k+1(t+ 1) = I

(n)
d,k+1(t) + 1,

I
(n)
d,j (t+ 1) = I

(n)
d,j (t), for 0 ≤ j < θ(d), j ̸= k, k + 1.

3. B is inactive of degree d and e is the θ(d)-th deleted half-edge of B. The probability of

this event is
(d−θ(d)+1)I

(n)
d,θ(d)−1

m(n)−2t−1
. The next state is

A(n)(t+ 1) = A(n)(t) + d− θ(d) − 1,

I
(n)
d,j (t+ 1) = I

(n)
d,j (t), (0 ≤ j < θ(d) − 1),

I
(n)
d,θ(d)−1(t+ 1) = I

(n)
d,θ(d)−1(t) − 1.

Let Ft denote the pairing generated by time t, i.e., Ft = {e1, e2} is the set of half-edges picked at

time t. We obtain the following equations for the expectations of A(n)(t+1), {I(n)d,j (t+1)}d,j<θ(d)
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conditioned on A(n)(t), {I(n)d,j (t)}d,j<θ(d):

E
[
A(n)(t+ 1) −A(n)(t) | Ft

]
= −1 +

−A(n)(t) +
∑

d(d− θ(d) + 1)(d− θ(d))I
(n)
d,θ(d)−1(t)

m(n) − 2t− 1
,

E
[
I
(n)
d,0 (t+ 1) − I

(n)
d,0 (t) | Ft

]
= −

dI
(n)
d,0 (t)

m(n) − 2t− 1
,

E
[
I
(n)
d,j (t+ 1) − I

(n)
d,j (t) | Ft

]
=

(d− j + 1)I
(n)
d,j−1(t) − (d− j)I

(n)
d,j (t)

m(n) − 2t− 1
.

We will show in the next section, that the trajectory of these variables throughout the

algorithm is a.a.s. (asymptotically almost surely, as n → ∞ ) close to the solution of the

deterministic differential equations suggested by these equations.

3.4.2 Proof of Theorem 3.2

The proof of Theorem 3.2 is mainly based on Theorem A.10. Indeed we will apply this theorem

to show that the trajectory of I
(n)
d,j throughout the algorithm is a.a.s. close to the solution of the

deterministic differential equations suggested by these equations.

Let (DE) be the following system of differential equations:

i′d,0(τ) =
−did,0(τ)

λ− 2τ
,

i′d,j(τ) =
(d− j + 1)id,j−1(τ) − (d− j)id,j(τ)

λ− 2τ
(0 < j < θ(d)),

with τ ∈ [0, λ/2), and initial conditions

id,0(0) = pd(1 − α(d)) , id,j(0) = 0 for 0 < j < θ(d).

Lemma 3.11. The solution of the system of differential equations (DE) is

id,j(τ) = pd(1 − α(d))

(
d

j

)
yd−j(1 − y)j ,

where y = (1 − 2τ/λ)1/2.

Proof. Let u = u(τ) = −1
2 ln(λ − 2τ). Then u(0) = −1

2 ln(λ), u is strictly monotone and so

is the inverse function τ = τ(u). Let fd,j(u) = id,j(τ(u)). We write the system of differential
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equations above with respect to u:

f ′d,0(u) = −dfd,0(u),

f ′d,j(u) = (d− j + 1)fd,j−1(u) − (d− j)fd,j(u).

We now show by induction that the solution is

fd,j(u) = e−(d−j)(u−u(0))
j∑

r=0

(
d− r

j − r

)(
1 − e−(u−u(0))

)j−r
fd,r(u(0)),

0 ≤ j ≤ θ(d) − 1. This formula is obviously true for j = 0. Suppose it holds for some j ≥ 0.

Then using
d

du
(fd,j(u)e(d−j−1)(u−u(0))) = e(d−j−1)(u−u(0))(d− j)fd,j(u),

and by inductive hypothesis, we obtain

fd,j+1(u)e(d−j−1)(u−u(0)) − fd,j+1(u(0))

= (d− j)

j∑
r=0

fd,r(u(0))

(
d− r

j − r

)∫ u

u(0)

(
1 − e−(v−u(0))

)j−r
e−(v−u(0))dv

=

j∑
r=0

fd,r(u(0))
d− j

j − r + 1

(
d− r

j − r

)(
1 − e−(u−u(0))

)j−r+1

=

j∑
r=0

fd,r(u(0))

(
d− r

j + 1 − r

)(
1 − e−(u−u(0))

)j−r+1
.

Hence we have

fd,j(u) = e−(d−j)(u−u(0))
j∑

r=0

(
d− r

j − r

)(
1 − e−(u−u(0))

)j−r
fd,r(u(0)),

for 0 ≤ j ≤ θ(d) − 1. By going back to τ , we obtain

id,j(τ) = yd−j
j∑

r=0

id,j(0)

(
d− r

j − r

)
(1 − y)j−r, y = (1 − 2τ/λ)1/2.

It is then easy to finish the proof.

By Condition 1.17, we know

λ =
∑
k

kpk ∈ (0,∞).
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Then, for all ϵ > 0 there exist a constant Kϵ, such that∑
d≥Kϵ

dpd < ϵ.

By Lemma 3.11

id,j(τ) = pd(1 − α(d))

(
d

j

)
yd−j(1 − y)j ≤ pd.

Let N (n)(d) denote the number of vertices with degree d. Again, by Condition 1.17,∑
d

kN (n)(d)/n→ λ ∈ (0,∞).

Therefore, for n large enough, ∑
d≥Kϵ

dN (n)(d)/n < ϵ.

Hence we obtain∑
d≥Kϵ, j<θ(d)

d | I(n)d,j (t)/n− id,j(t/n) | ≤
∑

d≥Kϵ, j<θ(d)

d
(
I
(n)
d,j (t)/n+ id,j(t/n)

)
≤

∑
d≥Kϵ, j<θ(d)

d
(
N (n)(d)/n+ pd

)
< 2ϵ. (3.12)

Let us define

a(τ) := λ− 2τ −
∑

d,j<θ(d)

(d− j)id,j(τ), and (3.13)

i(τ) :=
∑

d,j<θ(d)

id,j(τ). (3.14)

Then by Lemma 3.11, we have

a(τ) = λ− 2τ −
∑
d

∑
j<θ(d)

(d− j)id,j(τ)

= λy2 − y E
[
(1 − α(D))D11

(
Bin(D − 1, 1 − y) < θ(D)

)]
= fα,θ(y), and

i(τ) =
∑
d

∑
j<θ(d)

pd(1 − α(d))

(
d

j

)
yd−j(1 − y)j

= E [(1 − α(D))11 (Bin(D, 1 − y) < θ(D))] ,
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where y = (1 − 2τ/λ)1/2, and D is a random variable with distribution P(D = r) = pr.

For ϵ > 0, we let Kϵ be defined as above, and we let b(ϵ) :=
∑

d<Kϵ
θ(d). We now define the

domains Ω(ϵ) as

Ω(ϵ) :=
{(
τ, {id,j}d<Kϵ,j<θ(d)

)
∈ Rb(ϵ)+1 : − ϵ < id,j < 1,−ϵ < τ <

λ(1 − ϵ2)

2
,

λ− 2τ −
∑
d<Kϵ

∑
j<θ(d)

(d− j)id,j > ϵ
}
.

Let T
(n)
Ω be the stopping time for Ω which is the first time t when

(
t/n, {I(n)d,j (t/n)}

)
/∈ Ω.

We will use Theorem A.10. The domain Ω(ϵ) is a bounded open set which contains all initial

values of variables which may happen with positive probability. Each variable is bounded by a

constant times n. By the definition of our process, the Boundedness Hypothesis is satisfied with

β(n) = 1. Trend Hypothesis is satisfied by some λ1(n) = O(1/n). Finally the third condition

(Lipschitz Hypothesis) of the theorem is also satisfied since λ− 2τ is bounded away from zero.

Note that for 0 < j < θ(d), we have Id,j(0) = 0, and by Condition 1.17 and by definition,

Id,0(0)/n
p→ pd(1 − α(d)). Then we set λ = O(n−1/4) > λ1. The conclusion of Theorem A.10

now gives for all d ≤ Kϵ

I
(n)
d,j (t) = nid,j(t/n) +O(n3/4) (3.15)

with probability 1 −O(n7/4 exp(−n1/4)) uniformly for all t ≤ nσ, where σ = σ(n) is the supre-

mum of those τ for which the solution of the differential equations (DE) can be extended before

reaching within l∞-distance Cn−1/4 of the boundary of Ω(ϵ).

Then we have by (3.15)

sup
t≤nσ

∑
d<Kϵ

∑
j<θ(d)

d
∣∣∣I(n)d,j (t)/n− id,j(t/n)

∣∣∣ = op(1). (3.16)
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Hence by (3.12) we obtain

sup
t≤nσ

∣∣∣A(n)(t)/n− a(t/n)
∣∣∣ = sup

t≤nσ

∣∣∣∣∣∣m(n)/n− λ−
∑
d

∑
j<θ(d)

(d− j)
(
I
(n)
d,j (t)/n− id,j(t/n)

)∣∣∣∣∣∣
≤

∣∣∣m(n)/n− λ
∣∣∣+ sup

t≤nσ

∑
d

∑
j<θ(d)

d
∣∣∣I(n)d,j (t)/n− id,j(t/n)

∣∣∣
≤ op(1) + sup

t≤nσ

∑
d≥Kϵ

∑
j<θ(d)

d
∣∣∣I(n)d,j (t)/n− id,j(t/n)

∣∣∣
≤ 2ϵ+ op(1), (3.17)

and by the same argument

sup
t≤nσ

∣∣∣I(n)(t)/n− i(t/n)
∣∣∣ = sup

t≤nσ

∣∣∣∣∣∣
∑
d

∑
j<θ(d)

(
I
(n)
d,j (t)/n− id,j(t/n)

)∣∣∣∣∣∣
≤ op(1) + sup

t≤nσ

∑
d≥Kϵ

∑
j<θ(d)

d
∣∣∣I(n)d,j (t)/n− id,j(t/n)

∣∣∣
≤ 2ϵ+ op(1). (3.18)

To analyze σ, we need to determine which constraint is violated when the solution reaches

the boundary of Ω(ϵ). It cannot be the first constraint, because (3.15) must give asymptotically

feasible values of I
(n)
d,j until the boundary is approached. It remains to determine which of the

last two constraints is violated when τ = σ.

First assume fα,θ(y) > 0 for all y ∈ (0, 1], i.e., y∗ = 0. Then we have a(τ) > 0 for all

τ ∈ [0, λ), which is

λ− 2τ −
∑
d

∑
j<θ(d)

(d− j)id,j > 0.

Now note that λ − 2τ −
∑

d<Kϵ

∑
j<θ(d)(d − j)id,j ≤ ϵ implies fα,θ(y) < ϵ. Then by continuity

of the function fα,θ, we conclude that in this case we can choose ϵ small enough, such that for

any ϵ0 > 0, and for n large enough, we will have w.h.p. σ > λ− ϵ0. Then by (3.17),

T
(n)
f > n(λ− ϵ0),

and (3.18) implies Φ(n)(α, θ) = 1 − op(1).

Consider now y∗ > 0, and suppose further that y∗ is not a local minimum point of fα,θ(y).

This means fα,θ(y) < 0 for some interval (y∗−a, y∗). We infer that the last constraint is violated
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at time τ̂ ∼ λ(1 − (y∗)2)/2. We apply Corollary A.14 with D̂ the domain Ω(ϵ) defined above,

and the domain D replaced by Ω′(ϵ), which is the same as Ω(ϵ) except that the last constraint

is omitted:

Ω′(ϵ) :=
{(
τ, {id,j}d<Kϵ,j<θ(d)

)
∈ Rb(ϵ)+1 : − ϵ < id,j < 1,−ϵ < τ <

λ(1 − ϵ2)

2

}
.

This gives us the convergence upto the point where the solution leaves Ω′(ϵ) or when

λ− 2t/n−
∑
d<Kϵ

∑
j<θ(d)

(d− j)I
(n)
d,j (t)/n > ϵ

is violated. Since a(τ) begins to go negative after τ̂ , and by (3.17) it follows that

λ− 2t/n−
∑
d<Kϵ

∑
j<θ(d)

(d− j)I
(n)
d,j (t)/n > ϵ

must be violated almost asymptotic surely. Then it is clear (by choosing ϵ small enough) that

in this case for any ϵ′ > 0, and for n large enough, we will have w.h.p. T
(n)
f /n ∈ (τ̂ − ϵ′, τ̂ + ϵ′),

which gives T
(n)
f /n

p→ τ̂ . We conclude by (3.18)

|A(n)
f | = n− I(n)(T

(n)
f ) = n− nE [(1 − α(D))11 (Bin(D, 1 − y∗) < θ(D))] + op(n),

which completes the proof for G∗(n, (di)
n
1 ).

Now it suffices to use Corollary 1.20, to transfer the result from G∗(n, (di)
n
1 ) to G(n, (di)

n
1 ).

3.4.3 Proof of Theorem 3.3

For each node i, let C(i) denote the final set of active nodes when in the starting state of the

procedure the node i is the only active node. Clearly if j ∈ C(i), then C(j) ⊆ C(i). Let α(d) = α

for each d ∈ N. We define γθ(D) := E[D(D−1)11(θ(D)=1)]
E[D] .

We first prove that if γθ(D) > 1, then there exists a single node which can activate a positive

fraction of the population. To do this, we use Theorem 1.30 about the existence of a giant

component in the percolated graph.

We consider πθ(d) = 11 (θ(d) = 1). Let G∗(n, (di)
n
1 )πθ

be the random graph obtained by delet-

ing all the nodes of G∗(n, (di)
n
1 ) for which the threshold is greater than 1. Hence G∗(n, (di)

n
1 )πθ

is a subgraph of G∗(n, (di)
n
1 ) and we have

v ∈ G∗(n, (di)
n
1 )πθ

if and only if v ∈ G∗(n, (di)
n
1 ) & θ(dv) = 1.
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It is clear that to prove the existence of a node v which can trigger a global cascade in

G∗(n, (di)
n
1 ) w.h.p., it suffices to prove that w.h.p. there is a giant component in the random

percolated graph G∗(n, (di)
n
1 )πθ

. Indeed the threshold of every node in the giant component of

G∗(n, (di)
n
1 )πθ

is equal to one and then each node in the giant component can activate the whole

component. By Theorem 1.30, there is w.h.p. a giant component in G∗(n, (di)
n
1 )πθ

if and only if

λ <
∞∑
d=0

d(d− 1)πθ(d)pd

=
∞∑
d=0

d(d− 1)11 (θ(d) = 1) pd

= E [D(D − 1)11 (θ(D) = 1)] .

We now prove that if γθ(D) < 1, then for any k = o(n), we have |C(1, 2, ..., k)| = op(n). We

will actually prove that if γθ(D) < 1, w.h.p. we will have limα→0 Φ(α, θ) = 0 which implies the

claim. Define

fθ(y) := lim
α→0

fα,θ(y)

= λy2 − y E
[
D11
(
Bin(D − 1, 1 − y) < θ(D)

)]
.

Clearly we have fθ(1) ≥ 0. We claim that if γθ(D) < 1, then fθ(1 − ϵ) < 0 for sufficiently small

ϵ > 0. Indeed, we have

fθ(1 − ϵ) = λ(1 − ϵ)2 − (1 − ϵ)E
[
D11
(
Bin(D − 1, ϵ) < θ(D)

)]
= λ(1 − ϵ)2 − (1 − ϵ)

(
λ− E

[
D11
(
Bin(D − 1, ϵ) ≥ θ(D)

)])
= λ(1 − 2ϵ) − (1 − ϵ)(λ− E

[
D(D − 1)11

(
θ(D) = 1

)]
ϵ) + o(ϵ)

=
(
−λ+ E

[
D(D − 1)11

(
θ(D) = 1

)])
ϵ+ o(ϵ),

which is negative for γθ(D) < 1. We infer that w.h.p. limα→0 y
∗ = 1. And this in turn implies,

by Theorem 3.2, that w.h.p. limα→0 Φ(α, θ) = 0. This completes the proof.

Conclusion and Future Work

In this chapter, we have studied diffusion and bootstrap percolation in a random graph with a

given degree sequence. Our main result is a theorem which enables to find the final proportion of
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the active vertices in the asymptotic case, i.e., when n→ ∞ . It would be interesting to obtain

quantitative versions of our results, such as large deviation estimates and central limit theorems.

But this seems to be more involved due to the generality of our model (see for example [109] for

some related work on the particular problem of k-core).

Coexistence in bootstrap percolation. Consider the threshold θ bootstrap percolation

model on random regular graphs with degree d, and initial density α. It is known (c.f., Corollary

3.6) that there exists a nontrivial critical value for α, which we call αf , such that for α > αf

, the final bootstrapped configuration is fully occupied for almost every initial configuration,

and for α < αf the final bootstrapped configuration has density of occupied vertices less than

1. In our future work, we establish the existence of a distinct critical value for α, αc, such that

0 < αc < αf , with the following properties: if α < αc, then for almost every initial configuration,

there is no giant cluster of occupied vertices (a component containing at least a positive fraction

of occupied vertices) in the final bootstrapped configuration; and if α > αc, then for almost

every initial configuration, there is a giant cluster of occupied vertices. It is interesting to note

that when α < αf , we have a giant cluster of vacant sites. Therefore, in the intermediate phase

between αc and αf giant clusters of vacant and of occupied sites coexist. We refer to [70] for

the similar results in the case of infinite regular trees.
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Contagion in Financial Networks

Cascades of insolvency across financial institutions may be modeled as a contagion process on

a network representing their mutual exposures. We derive rigorous asymptotic results for the

magnitude of contagion in a large financial network and give an analytical expression for the

asymptotic fraction of defaults, in terms of network characteristics. These results extend previous

studies on contagion in (unweighted) random graphs to inhomogeneous directed graphs with

a given degree sequence and arbitrary distribution of weights. We use our result to obtain a

criterion for the resilience of a large financial network to the default of a small group of financial

institutions. Our results emphasize the role played by ”contagious exposures” and show that

institutions that are both highly connected and over-exposed are those which contribute most to

network instability in case of default. Our asymptotic results are shown to be in good agreement

with simulations for networks whose sizes are realistic, showing the relevance of the large network

limit for macro-prudential regulation.
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4.1 Introduction

The recent financial crisis has highlighted the interconnectedness of financial institutions world-

wide and led to an increased awareness of the impact of network externalities when considering

financial stability [44].

The interrelations among financial institutions may be modeled in terms of a network whose

characteristics turn out to be heterogeneous and complex in nature [34]. Many of the existent

frameworks [150, 59, 60] to assess systemic risk are based on a paper by Eisenberg and Noe

[57]. In their model, when a firm A cannot meet all its financial obligations, it defaults and

the amount recovered from A’s debtors is redistributed to its creditors proportionally to their

outstanding credit. It is shown that a clearing payment vector always exists, giving for each

node the value of its total payable debt. Elsinger et al. [59, 60] incorporate a stochastic model

for the external assets, and thus a probability that any bank defaults due to external shocks,

and then use the clearing mechanism affecting the whole system to find the equilibrium payment

vector. Upper’s analysis [150] is based on the reconstruction of the interbank liabilities matrix

by maximization of entropy, and the Eisenberg and Noe [57] clearing mechanism, to find the
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size of the contagion triggered by a single firm. One observation is that, the model in [57]

was conceived for payment systems, where all obligations must be paid in the short term, and

this situation can be approximated by instantaneous clearing. In banking networks however,

financial obligations do not necessarily represent cash flows, and consequently a mechanism

that instantaneously clears all obligations does not exist. Indeed, the exposures may represent

debt with different maturities, market valuations of any kind of financial contracts that are due

at different time horizons. More importantly, under this model, the total loss that propagates

through the financial network due to the default of a firm is limited to the total debt of the initial

defaulting firms, so one does not see an effect of loss amplification. Secondly, as [149, 127, 49]

point out, using maximization of entropy to reconstruct balance sheets may bias results: the

threshold for a shock giving place to contagion may be larger, but conditionally on cascades

occurring, the effects may be more widespread.

Studies like Gai and Kapadia [77], and Nier et al. [133] analyze contagion on random graphs.

The former give an asymptotic formula for the size of contagion in a model with arbitrary degree

distribution and equal weights, found under the mean field approximation. The latter considers

an Erdős-Rényi graph, and computes the default cluster for each bank by simulation with an

exogenous recovery rate.

Another branch of contagion studies, from the seminal paper of Allen and Gale [11] to the

recent work of Battiston et al. [18], is mostly concerned by the impact of connectivity on systemic

risk in regular unweighted networks, where all the exposures to counterparties are equal. While

the former paper concludes on the benefits of an increase in connectivity thanks to the risk

sharing effect, the latter shows that systemic risk is generally not monotonically decreasing with

the diversification since their model incorporates a negative trend reinforcement that is stronger

with connectivity. Battiston et al. [18] analyze several channels of contagion on regular graphs.

In their model the robustness, that can be seen as a capital ratio, of all nodes evolve according

to some linearly coupled SDEs before any defaults occur. The distribution of the robustness

can be found in closed form. The final fraction of defaults is given then by the mean field

approximation.

In this context, we would like to understand how the network topology influences the conta-

gion magnitude, and what is the amplification of the number of defaults due to domino effects.

Moreover, since the exposures are deeply heterogeneous, we need to understand the role of

different nodes in the default propagation not only in terms of their connectivity, but also in
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terms of how their assets are distributed among their counterparties. We introduce a notion of

‘contagiousness’ of links, in the sense that a link is contagious if the corresponding exposure is

larger than the capital of the node to which it belongs. We study the skeleton of such contagious

links, and find conditions such that there is no strongly giant connected component.

Our work extends previous results known from the random graph literature, to allow for a

prescribed sequence of in/out degrees and exposures. The related and well studied problems are

the existence of giant components (e.g., see [47], and Section 1.4.5), k-core problem (e.g., see

Section 1.4.2), and bootstrap percolation presented in the last chapter. We use the differential

equation method for random graph processes, to prove rigorously our main result, Theorem 4.8,

representing a convergence in probability as the number of nodes n→ ∞, of the cascade size to

a limit known in closed form.
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Figure 4.1: (a) The Brazilian interbank network, (b) The out-degree (number of debtors) has

a Pareto tail distribution with exponent ≈ 1.7, (c) The in-degree (number of creditors) has a

Pareto tail distribution with exponent ≈ 3 . Source: Cont et al. [45].

4.1.1 Summary

In this chapter, we propose a probabilistic approach to contagion modeling under incomplete

information, which consists of embedding the financial network into the probability space of

random networks with prescribed balance sheet data. We study contagion on a sequence of such

networks of size tending to infinity and give conditions on the degree and exposure sequence

such that the relevant quantities converge (i.e. the final fraction of defaults). Based on local

parameters evaluated for each bank like its number of counterparties and ‘contagious’ links,
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we find in closed form the limit in probability of the size of a default cascade generated by

a random initial shock as the number of nodes n → ∞. We introduce a global criterion of

resilience of the financial network to small initial shocks, in which the contribution to systemic

risk of every node becomes apparent. The influence of the network topology on the cascade size

is now quantifiable since the expression for the asymptotic size of cascade involves the empirical

distribution of degrees.

This approach allows us to obtain several new results:

• We obtain an asymptotic expression for the size of a default cascade in a large network,

in terms of the characteristics of the network, extending previous results for homogeneous

undirected random graphs to heterogeneous, weighted networks. These asymptotic results

are shown to be in good agreement with simulations for networks with large but realistic

sizes.

• We obtain an analytical criterion for the resilience of a large financial network to the

default of one or several institutions, in terms of the characteristics of the network.

• The analytical nature of these results allows to analyze the influence of network char-

acteristics, in a general setting, more explicitly than in previous studies. In particular,

our results underline the role played by contagious exposures and show that institutions

which are both highly connected and overexposed with respect to their capital may act as

potential hubs for default contagion.

• Our results show the importance of taking into account the heterogeneity of financial

networks when discussing issues of financial stability and contagion. In particular we show

that, contrarily to the intuition conveyed by examples based on homogeneous networks,

in presence of heterogeneity the relation between (average) connectivity of a network and

its resilience to contagion is not monotonous.

4.1.2 Outline

The chapter is organized as follows. In Section 4.2 we give a model for the financial network

on which we define the default dynamics, and describe the probabilistic setting we work with

throughout the chapter. Our main result concerning the asymptotic of the final fraction of de-

faulted banks is given in Section 4.3. The examples in Section 4.4 show how the final fraction
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depends on the magnitude of shocks, and point out the possible appearance of phase transitions.

We compare different networks topologies, by the minimal capital ratio for which the network

is resilient to contagion. Networks with the same average connectivity have different amplifica-

tions of initial shocks, and their degree of resilience to contagion is significantly changed when

heterogeneity is introduced. Technical proofs are given in Section 4.5.

4.2 Models

In this section, we first introduce a model of a financial network, then describe cascade dynamics

on this network, and finally the probabilistic setting we work with throughout the chapter.

4.2.1 The financial network

Interlinkages across balance sheets of financial institutions may be modeled as a network in

which the vertices represent financial institutions (banks, companies, hedge funds, etc.), and

links represent the interbank exposures between these institutions.

Let g = (v, e) be a weighted directed graph on the vertex set v = [1, . . . , n]. There is a

weighted directed link e(i, j), between the node i and j, if and only if j has a financial obligation

towards i; e(i, j) representing in this case the dollar amount of this exposure. Otherwise e(i, j) =

0.

Let Li denote the total interbank debt of a node i, which is equal to the sum of all other

nodes’ exposures to i:

Li :=
∑
j∈v

e(j, i).

The total interbank assets Ai of a node i is the sum of all i’s exposures

Ai :=
∑
j∈v

e(i, j).

Table 4.1 shows a stylized balance sheet of a bank.

A bank faces unexpected losses, coming either from inside the financial network in the form

of unpaid obligations by the debtors, or from outside the financial network in the form of external

shocks emanating from the aggregate economy. The net worth of the bank, given by its capital
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Assets Liabilities

Interbank assets Interbank liabilities

Ai =
∑

j e(i, j) Li =
∑

j e(j, i)

Deposits

Di

Other Net worth

assets

xi ci = γiAi

Table 4.1: Stylized balance sheet of a bank.

ci, represents its capacity for absorbing losses before it becomes insolvent. We define the ratio

γi as

γi :=
ci
Ai
.

We will refer to γi as ”capital ratio” although technically it is the ratio of capital to interbank

assets and not total assets. An institution is insolvent if its net worth is negative or zero, in

which case we set γi = 0.

Definition 4.1. A financial network (e, γ) is defined by

• a matrix of exposures (e(i, j))1≤i,j≤n, and

• a set of capital ratios (γi)1≤i≤n.

The in-degree of a bank i, denoted by d−(i), is the number of its creditors

d−(i) = #{j ∈ v | e(j, i) > 0},

while its out-degree, denoted by d+(i), is the number of its debtors

d+(i) = #{j ∈ v | e(i, j) > 0}.

If a node has out-degree j and in-degree k, we will say that it has degree (j, k).

In a financial network (e, γ), the set of initially insolvent institutions is represented by

D0(e, γ) = {i ∈ v | γi = 0}.



144 Chapter 4. Contagion in Financial Networks

Empirical studies on interbank exposures [34, 45] show these networks to have complex, het-

erogeneous structure: Figure 4.1 displays the Brazilian interbank network, studied in [45]. In

particular, one observes a heavy-tailed cross sectional distribution of degrees and exposures.

4.2.2 Default cascades

We describe now the default cascade on the financial network (e, γ). A node defaults when its

capital is wiped out, i.e., γi = 0. We first suppose that there exists a single bank i such that

its capital is wiped out by an initial shock. Then its creditors incur a loss proportional to their

outstanding exposures

lj,i := (1 −Ri)e(j, i), for all j ∈ v,

where we denoted by Ri the recovery rate for the interbank liability of bank i. The loss lj,i will

in turn erode j’s capital to a level

(γjAj − lj,i)+,

where for a ∈ R; (a)+ := max(a, 0).

If the loss is greater than j’s capital, then j defaults. Bank j’s default may generate further

rounds of defaults, with losses accumulating. The recovery rate is a key element, depending on

how much of i’s assets, Ai, are recovered from i’s own debtors. In the most optimistic scenario

all assets recovered by a defaulted bank are redistributed to creditors as for example in the paper

by Eisenberg and Noe [57]. In practice however and especially in the short term, the recovery

rates are very low. In the remainder of the chapter we will use an exogenous parameter, R

representing the recovery rate of a defaulted bank, constant over all banks, i.e., Ri = R, for all

i ∈ v.

The previous dynamics can be extended to the case where before the cascade several banks

default. We denote the initial defaults, i.e., {i ∈ v | γi = 0}, fundamental defaults. The

following rounds of default result from nonpayment of liabilities by the defaulted banks. We

denote such subsequent defaults contagious defaults as in [59].

One can write the deterministic process of contagion in a technical manner, introducing the

sequence

De,γ = (De,γ
r )r≥0,

with De,γ
r the set of defaults up to round r.
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Definition 4.2 (Default contagion in the financial network (e, γ)).

(i) Set De,γ
0 := {i ∈ v | γi = 0}.

(ii) At round r ≥ 1, set

De,γ
r := {i ∈ v | γiAi < (1 −R)

∑
j∈De,γ

r−1

e(i, j)}. (4.1)

(iii) The cascade stops when no more defaults occur.

The sequence De,γ is non-decreasing (in each step the new nodes are added to the set of

defaults), and we have

De,γ
0 ⊆ De,γ

1 ⊆ · · · ⊆ De,γ
n−1.

When the network is of size n, it is easy to see that the process stops at most after n − 1

time steps. We are interested in the fraction of defaults generated by the cascade.

Definition 4.3. The final fraction of defaults, denoted by αn(e, γ), in the financial network

(e, γ) is given by

αn(e, γ) =
|De,γ

n−1|
n

. (4.2)

4.2.3 A random network model

In the previous sections, we modeled the financial network by a weighted graph e with the vertex

set [1, . . . , n], and the corresponding sequence of capital ratios γ = (γi)
n
i=1. The set of exposures

of node i to its counterparties is given by {e(i, j) > 0}.

To study large network asymptotics, we introduce a random network model as an ensemble

of which our network is a typical sample. We embed the network e in a sequence of networks

(en, γn)n≥1. The sequences of in- and out- degrees in these networks, also indexed by n, are

denoted d+
n = {d+n (i)}ni=1, and d−

n = {d−n (i)}ni=1, respectively. Each network en is seen as a

realization of a random weighted graph En.

Definition 4.4. Let Gn(en,d
+
n ,d

−
n ) be the set of all weighted directed graphs with degree

sequence d+
n ,d

−
n such that, for any node i, the set of exposures is given by the non-zero elements



146 Chapter 4. Contagion in Financial Networks

of line i in the exposure matrix en. On a probability space (Ω,A,P), we define En as a random

network uniformly distributed on Gn(en,d
+
n ,d

−
n ). We endow the nodes in En with the capital

ratios γn.

As given by the above definition, the financial network is modeled under incomplete infor-

mation. Disclosure of counterparty identity is not required in our framework, and thus allows

for valuable confidentiality. On the other hand, we require important information, as the exact

composition of balance sheets: the size of all exposures and the connectivity of each node which

determine the crucial characteristics of the network and its response to external shocks.

Remark 4.5. The random financial network En, is a random matrix taken uniformly over all

n× n matrices having the following properties:

• for every i, 1 ≤ i ≤ n, line i in En is a permutation of line i in en, with the constraint

that En(i, i) = 0,

• on every column 1 ≤ j ≤ n, the number of non zero elements in En is the same as in en,

and endowed with the capital ratios γn. So we have the nodes in En with the capital ratios γn,

such that

∀i = 1 . . . n, {En(i, j), En(i, j) > 0} = {en(i, j), en(i, j) > 0},

#{j ∈ v, En(j, i) > 0} = d+n (j), and #{j ∈ v, En(i, j) > 0} = d−n (i).

Definition 4.4, is equivalent to the representation of the financial system by an unweighted

graph chosen uniformly among all graphs with the degree sequence (d+
n ,d

−
n ), in which we assign

to node i’s out-going edges the set of weights Wn(i) := {en(i, j) > 0}. A standard method for

studying random graphs with prescribed degree sequence is to consider the related (random)

multigraph with the same degree sequence, constructed by configuration model and denoted by

G∗
n(d+

n ,d
−
n , en), and then condition on this multigraph being simple. We refer to Section 4.5,

where we present the proof of our main results.

4.3 Results

We consider a sequence of random financial networks as introduced above. Our goal is to study

the behavior of αn(En, γn) which represents the size of the cascade generated by the default of

initially insolvent institutions D0(En, γn) = {i | γn(i) = 0}.
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4.3.1 Assumptions

We denote by mn the total number of links in the network en

mn :=

n∑
i=1

d+n (i) =

n∑
i=1

d−n (i),

and we introduce the empirical distribution of the degrees as

µn(j, k) :=
1

n
#{i : d+n (i) = j, d−n (i) = k}.

From now on, we assume that the degree sequence {d+
n } and {d−

n } satisfy the following

regularity conditions analogous to Condition 1.17.

Assumption 4.6. For each n ∈ N, d+
n = {(d+n (i))ni=1} and d−

n = {(d−n (i))ni=1} are sequences

of nonnegative integers with
∑n

i=1 d
+
n (i) =

∑n
i=1 d

−
n (i), and such that, for some probability

distribution µ(j, k), independent of n:

1. The degree density condition: the empirical proportion µn(j, k) of vertices of degree (j, k)

tends to µ(j, k): µn(j, k) → µ(j, k) as n→ ∞;

2. The finite expectation property:
∑

j,k jµ(j, k) =
∑

j,k kµ(j, k) =: λ ∈ (0,∞);

3. The second moment property:
∑n

i=1(d
+
n (i))2 + (d−n (i))2 = O(n).

In particular, the above assumption implies that mn/n → λ, as n → ∞ (c.f. Remark 1.18, and

[84, Theorems 5.4.2]).

We denote by Σe
i the set of permutations of the counterparties of i in a network e. We now

map the sequences of continuous exposures and capital ratios into discrete sequences, represent-

ing the default threshold for each node.

For each node i and permutation τ ∈ Σe
i , we define

Θ(i, τ, e) := min

k ≥ 0 | γi
d+(i)∑
j=1

e(i, j) <
k∑

j=1

(1 −R)e(i, τ(j))

 , (4.3)

which represents the threshold function; conditional on the order τ in which i’s counterparties

may default, this function determines how many defaults i’s capital buffer can withstand before

i defaults.
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Let us define

pn(j, k, θ) :=
#{(i, τ) | 1 ≤ i ≤ n, τ ∈ Σen

i , d+n (i) = j, d−n (i) = k, Θ(i, τ, en) = θ}
nµn(j, k)j!

.

For example, when we take θ = 1, then nµn(j, k)j!pn(j, k, 1) is simply the total number of

’contagious links’ that enter a node with degree (j, k). We say that a link is contagious if it

represents an exposure of a node larger than its capital.

From now on, we assume that the limit of pn(j, k, θ) exists when n→ ∞. Under this assump-

tion and Assumption 4.6, we show in Section 4.5, that the fraction of nodes with degree (j, k),

which default after having θ defaulted out-going neighbors, in the random financial network En,

converges in probability to this same limit.

Assumption 4.7. There exists a function p : N3 → [0, 1], such that for all j, k, θ ∈ N (θ ≤ j)

pn(j, k, θ) −→ p(j, k, θ), as n→ ∞.

Under this assumption, we will see in Section 4.5 that p(j, k, θ) is also the limit, in probability,

of the fraction of nodes with degree (j, k) which become insolvent after θ of their counterparties

default:

• p(j, k, 0) represents the proportion of initially insolvent nodes with degree (j, k);

• p(j, k, 1) represents the proportion of nodes with degree (j, k) which are ‘vulnerable’ i.e.

may become insolvent due to the default of a single counterparty.

For example assume that for all n, the exposures of all nodes are independent, and identically

distributed for all nodes with the same degree (j, k), with a law depending on j and k, but not

on n, denoted by FX(j, k). Assume also that the same holds for the sequence of capital ratios,

i.e., independent variables with a law depending on j and k, but not on n, denoted by Fγ(j, k).

Then it is easy to see that, by the law of large numbers, Assumption 4.7 holds, and the limit

p(j, k, θ) is given by

p(j, k, θ) = P(X(θ) > γ

j∑
l=1

X(l) −
θ−1∑
l=1

(1 −R)X(l) ≥ 0),

with (X(l))jl=1 are i.i.d. random variables with distribution FX(j, k), and γ an independent

random variable of law Fγ(j, k).
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4.3.2 The asymptotic size of contagion

We consider the representation of the financial network by a random graph as described in

Section 4.2.3. The quantity αn(En, γn) represents the final fraction of defaults in the random

network of size n.

Let us define

β(j, π, θ) := P(Bin(j, π) ≥ θ) =

j∑
l≥θ

(
j

l

)
πl(1 − π)j−l.

We let p(j, k, θ) be the limit in Assumption 4.7. We show in Lemma 4.17 that, this quantity

also represents the asymptotic limit in probability of the fraction of nodes with out-degree j

and in-degree k, that will default when θ of their debtors default. We define the function

I : [0, 1] → [0, 1] as

I(π) :=
∑
j,k

µ(j, k)k

λ

j∑
θ=0

p(j, k, θ)β(j, π, θ). (4.4)

I(π) has the following interpretation: if the out-going neighbor of a randomly chosen node

defaults with probability π, then I(π) is the expected fraction of defaulted out-going neighbors

after one iteration of the cascade.

Let π∗ be the smallest fixed point of I in [0, 1], i.e.,

π∗ = inf{π ∈ [0, 1] | I(π) = π}.

Note that I admits at least one fixed point. Indeed, I is a continuous increasing function,

and we have

I(1) =
∑
j,k

µ(j, k)k

λ

j∑
θ=0

p(j, k, θ) ≤ 1,

since
∑j

θ=0 p(j, k, θ) ≤ 1. Moreover

I(0) =
∑
j,k

µ(j, k)k

λ
p(j, k, 0) ≥ 0.

The main result of this chapter is the following.

Theorem 4.8. Consider a sequence of exposure matrices and capital ratios

{(en)n≥1, (γn)n≥1},
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satisfying Assumptions 4.6 and 4.7, and the corresponding sequence of random matrices {(En)n≥1}.

Let π∗ be the smallest fixed point of I in [0, 1], i.e.,

π∗ = inf{π ∈ [0, 1] | I(π) = π}.

We have

1. If π∗ = 1, i.e. if I(π) > π for all π ∈ [0, 1), then asymptotically all nodes default during

the cascades

αn(En, γn)
p→ 1.

2. If π∗ < 1, and furthermore π∗ is a stable fixed point of I (I ′(π∗) < 1), then the asymptotic

fraction of defaults satisfy

αn(En, γn)
p→
∑
j,k

µ(j, k)

j∑
θ=0

p(j, k, θ)β(j, π∗, θ).

A proof of this theorem is given in Section 4.5.3. We give now a heuristic argument based

on the branching process approximation.

Remark 4.9 (Out-going branching process approximation). The value π∗ is the probability

that an edge taken at random ends in a defaulted node. The intuition behind the function

I becomes apparent by an heuristic argument. We can approximate the local structure of a

randomly chosen vertex by the following branching process (see [10, 20], and Section 3.3): the

root ϕ with probability µ(jr, kr) has degree (jr, kr). In this branching process the children of

a node are its out-going neighbors. Each child has degree (j, k) with probability µ(j,k)k
λ , and

with probability equal to p(j, k, θ) defaults when θ of their own children default. Thanks to the

infinite tree structure, the state of default of the root’s children are Bernoulli and i.i.d. variables

with the same distribution as the state of default of their own children (Bernoulli of parameter

π). So the probability of any of the root’s children to have defaulted solves the equation

π =
∑
j,k

µ(j, k)k

λ

jr∑
θ=0

p(j, k, θ)β(j, π, θ) =: I(π).

If the solution of this equation is π∗, then the default probability of the root is given by∑
jr,kr

µ(jr, kr)

jr∑
θ=0

p(jr, kr, θ)β(jr, π
∗, θ).
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4.3.3 Resilience to contagion

In this subsection we introduce a notion of resilience to contagion of the financial network. Some

empirical studies show that the default of a single bank can trigger the default of up to 15% of

the network [150, 45]. This means that for some banks the default cluster size is a significant

fraction of the whole system. We consider the case where the initial defaults represent a small

number of the nodes.

Let us call the following condition the resilience condition:∑
j,k

µ(j, k)jk

λ
p(j, k, 1) < 1. (4.5)

As a corollary of Theorem 4.8 we have:

Corollary 4.10. Consider the sequence of random financial networks (En, γn) satisfying As-

sumption 4.6 and 4.7. If the resilience condition (4.5) is satisfied, then for any k = o(n), we

have

|D(1, 2, ..., k)| = op(n),

where for W ⊆ V , D(W ) denote the final defaulted nodes when we start the diffusion with initial

defaulted nodes W .

Proof. We let a fraction ϵ of all nodes represent fundamental defaults. More precisely for each

j, k, let

p(j, k, 0) = ϵ.

Then we have

I(α) =
∑
j,k

µ(j, k)k

λ

j∑
θ=0

p(j, k, θ)β(j, α, θ).

Using a first order expansion of β(j, α, θ) in α at 0:

β(j, α, θ) = 1{θ=0} + αj1{θ=1} + o(α).

Then,

I(α) =
∑
j,k

µ(j, k)k

λ
(ϵ+ αjp(j, k, 1)) + o(α).
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Let πϵ be the smallest fixed point of I. Given Condition 4.5, for α > 0 and small enough,

lim
ϵ→0

I(α) = α
∑
j,k

µ(j, k)jk

λ
p(j, k, 1) + o(α) < α.

On the other hand we have seen that I(0) ≥ 0. Thus limϵ→0 π
∗
ϵ = 0, and so by Theorem 4.8

the final fraction is o(n) with high probability. Hence the Corollary follows.

We show that the converse also holds, that if∑
j,k

µ(j, k)jk

λ
p(j, k, 1) > 1,

then the network is not resilient. Indeed the proof follows by the theorem below which states a

condition under which with high probability there exists a giant component, strongly interlinked

by contagious links (i.e., there is a directed path of contagious links from any node to another

in the component). The proof is based on Theorem 1.34 (of Chapter 1), and given in Section

4.5.4.

Theorem 4.11. Consider the sequence of random financial networks (En, γn) satisfying As-

sumption 4.6 and 4.7. If ∑
j,k

µ(j, k)jk

λ
p(j, k, 1) > 1, (4.6)

then with high probability, there exists set of nodes representing a positive fraction of the financial

system, strongly interlinked such that any node belonging to this set can trigger the default of all

nodes in the set.

Note that, given the topology of the network, Condition 4.5 sets limits on the asymptotic

fraction of contagious links pn(j, k, 1).

For financial networks, Gai and Kapadia [77] give the following cascade condition by a

heuristic argument, that we rewrite in our notation

1 −
∑
j,k

jk

λ
µ(j, k)vj < 0, (4.7)

with vj the probability that a bank with out-degree j is vulnerable, i.e. exposed to the default of

a single neighbor. This condition can be seen as a particular case of Condition 4.6, in which the

assets and capital buffers are i.i.d. variables drawn from an appropriate distribution. In such a
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case the convergence Assumption 4.7 is satisfied by the law of large numbers. The model of [77]

is an extension to the directed graph case of the generic model of global cascades proposed in

a seminal paper by Watts [151], What is actually stated in [77] is that if the cascade condition

is satisfied, then the expected size of a cascade starting from a randomly chosen node diverges,

with the expectation taken over the law of the random graph with the given degree distribution

and the uniform law of the initial default. The theorems we reproduced above show stronger

results of convergence in probability as the size of the graph tends to infinity. More importantly,

there is no reliance on a probabilistic model for the degree sequence or the balance sheet data:

real balance sheet data can be used (which must verify the mild Assumptions 4.6 and 4.7). As

such, what appears in other models since the probability of a node to be vulnerable represents

here the limit when n → ∞ of the fraction of contagious links, a directly measurable quantity.

Moreover as the capital ratios can be prescribed, it suffices to set to zero the capital ratio of

certain banks in order to have prescribed defaults. All this is crucial if one wants to use the

resilience measure in a stress testing framework (see Section 4.4.3).

Remark 4.12 (Too interconnected to fail?). We suppose that the resilience condition 4.5 is

satisfied. Let π∗ϵ be the smallest fixed point of I in [0, 1], when a fraction ϵ of all nodes rep-

resent fundamental defaults, i.e., p(j, k, 0) = ϵ for all j, k. We obtain then, by a first order

approximation of the function I, around ϵ

π∗ϵ −
ϵ

1 −
∑

j,k
µ(j,k)jk

λ p(j, k, 1)
= o(ϵ).

Also, by a first order approximation of the function

π →
∑
j,k

µ(j, k)

j∑
θ=0

p(j, k, θ)β(j, π, θ),

giving the asymptotic fraction of defaults in Theorem 4.8, we have

αn(En, γn) − ϵ(1 +

∑
j,k jµ(j, k)p(j, k, 1)

1 −
∑

j,k
µ(j,k)jk

λ p(j, k, 1)
) = op(ϵ). (4.8)

Suppose now that the defaulting initial fraction involves only nodes with degree (d+, d−), and

we denote π∗ϵ (d+, d−), the smallest fixed point of I in [0, 1], in the case where p(d+, d−, 0) = ϵ,

and p(j, k, 0) = 0 for all (j, k) ̸= (d+, d−). Then we obtain in this case

αn(En, γn) − ϵµ(d+, d−)(1 +
d−

λ

∑
j,k

µ(j,k)jk
λ p(j, k, 1)

1 −
∑

j,k
µ(j,k)jk

λ p(j, k, 1)
) = op(ϵ).
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This simple formula shows that there are basically two factors that determine how small

initial shocks are amplified by the financial network: the weakness of a node represented by its

in-degree d−, and the average weakness in the network, the weakness of a node being its average

number of out-going contagious links, i.e., jp(j, k, 1).

4.4 Numerical Results

In this section, we apply the previous results to networks whose size are realistic, and asses the

effect of heterogeneity in the empirical distributions as well as the relation between resilience

and connectivity.

4.4.1 Relevance of asymptotics for contagion study

The results in Section 4.3 hold in the asymptotic limit when n → ∞. The real financial net-

works may have several thousands of nodes. Indeed, the Federal Deposit Insurance Corporation

reports insuring a number of 7969 institutions as of 3/18/2010 while the European Central Bank

advances a figure of 8350 monetary financial institutions in the euro area (80% credit institutions

and 20% money market funds).

In the purpose of studying the relevance of asymptotic formula, we generate by Blanchard’s

algorithm [27] a scale free network of 10000 nodes with Pareto distributed exposures. This

model can be seen as a static version of the preferential attachment model. Conditional on

the sequence of out-degrees, an arbitrary out-going edge will be assigned to an end-node with

probability proportional to the power α of the node’s out-degree (for some real parameter α),

independently from all other edges. The empirical distribution of the out-degree is assumed to

converge to a power law with tail coefficient γ+

µ+n (j) := #{i | d+n (i) = j} n→∞→ µ+(j) ∼ jγ
++1.

From the graph’s construction, it is easy to see that the conditional law of the in-degree is a

Poisson distribution

P (D− = k | D+ = j) = e−λ(j)λ(j)k

k!
,

with λ(j) = jαE[D+]
E[(D−)α]

, . The main theorem in [27] states that the marginal distribution of the

in-degree has a Pareto tail with exponent γ− = γ+

α , provided 1 ≤ α < γ+. For α > 0, one
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obtains positive correlation between in- and out-degrees.

The distribution of this simulated network’s degrees and exposures is given in Figure 4.9,

and is based on the empirical analysis of the Brazilian network, June 2007 [45]. On one hand we
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Figure 4.2: (a) The distribution of out-degree has a Pareto tail with exponent 2.19, (b) The

distribution of the in-degree has a Pareto tail with exponent 1.98, (c) The distribution of the

exposures (tail-exponent 2.61).

make a simulation of the default contagion starting with a random set of defaults representing

0.1% of all nodes (chosen uniformly among all nodes). On the other hand we plug the empirical

distribution of the degrees, and the fraction of contagious links into Formula (4.8) for the am-

plification of a very small number of initial defaults. Figure 4.3 plots these values for varying

values of the minimal capital ratios. We find a good similarity between the theoretical and

the empirical amplification of the default number. We can clearly see that for minimal capital

ratios γmin less than the respective critical value γ∗min, the simulated amplification explodes.

Figure 4.4 plots the simulated final fraction of defaults starting from one fundamental default in

a simulated scale free network as a function of the in-degree, versus the theoretical slope given
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Figure 4.3: Amplification of the default number in a Scale-Free Network. The in- and out-degree

of the scale-free network are Pareto distributed with tail coefficients 2.19 and 1.98 respectively,

the exposures are Pareto distributed with tail coefficient 2.61, n = 10000.
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Figure 4.4: Number of defaulted nodes

4.4.2 The impact of heterogeneity

In the examples of the previous section, we can compute the minimal capital ratio γ∗min, such

that the network is resilient under the criterion (4.5). Two factors contribute to the sum in

Condition 4.5, the connectivity of the node and its ‘weakness’. We plot in Figure 4.5 three

cases: a scale free network with heterogeneous weights, a scale free network with equal weights,

and an homogeneous degree network (Erdős-Rényi) with equal weights, all having the same

average degree.

4.4.3 Stress testing

In the Supervisory Capital Assessment Program, implemented by the Board of Governors of the

Federal Reserve System in 2009, the top 19 banks in the US were asked to project their losses

and resources under a macroeconomic shock scenario1. The program determined which of the

large banks needed to augment its capital base in order to withstand the projected losses. So

1Available at http://www.federalreserve.gov/bankinforeg/bcreg20090424a1.pdf

http://www.federalreserve.gov/bankinforeg/bcreg20090424a1.pdf
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Figure 4.5: Amplification of the number of defaults in a Scale-Free Network (in and in-degree

of the scale-free network are Pareto distributed with tail coefficients 2.19 and 1.98 respectively,

the exposures are Pareto distributed with tail coefficient 2.61), the same network with equal

weights and an Erdős-Rényi Network with equal exposures n = 10000.
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far, the network effects such as the cascade behavior described in this chapter have not been

assessed by the regulator in such stress tests.

This section presents a simple example of a stress test in which the network amplification

of initial defaults becomes the major source of systemic risk. The sample network mimics the

stylized properties of real financial networks with deeply heterogeneous degrees and exposures

[34, 45].

Stress testing resilience to macroeconomic shocks.

Consider a banking system in which the ratio γi of each bank’s capital to its total assets is

restricted to be greater than a minimal capital ratio: γi ≥ γmin. If the ratio of institution i’s

interbank assets to its total assets is denoted by LRi, then

ci = γiAi
1

LRi
> 0. (4.9)

In a stress testing framework, we consider scenarios in which a given shock is applied to balance

sheets of banks, resulting in the loss of a fraction 0 ≤ S ≤ 1 of their external assets. To assess

how such a stress scenario affects the resilience of the network to contagion, we evaluate the

impact on the network of the default of a (small) fraction ϵ of nodes under stress scenarios of

variable severity.

Using the notations in Table 4.1, the remaining capital of bank i is then given by

ci(S) = (Ai + xi · (1 − S) − Li) · ϵi = (Ai +Ai(
1

LRi
− 1) · (1 − S) − Ai

LRi
(1 − γi))ϵi,

where ϵi are independent variables with

P(ϵi = 1) = ϵ = 1 − P(ϵi = 0),

ϵi = 1 indicating whether i is in default in the stress scenario under consideration.

This can be re-written so as to underline the effect of the shock S on the capital

ci(S) = γiAi
1

LRi
(1 − S

γi
(1 − LRi))ϵi,

which means that a loss equal to a fraction S of the external assets translates into a loss equal

to a fraction Zi := S
γi

(1 − LRi) of the capital buffer. Thus, in the stress scenario characterized

by a macroeconomic shock (S, ϵ), the ratio of capital to interbank assets is given by

γi(S, ϵ) = γi(1 − S

γi
(1 − LRi))ϵi. (4.10)
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Starting from this expression, one can use the results of Section 4.3 to evaluate the resilience

of the network and the fraction of final defaults as a function of the size of the macroeconomic

shock S, without resorting to large scale simulations. In particular, given that the Condition

(4.5) will depend on the shock size S, we will see that there is a threshold for the magnitude

of S above which it destabilizes the network and makes it vulnerable to contagion. This ’phase

transition’ indicate that a given network has a maximal tolerance for stress; we will see in fact

that this threshold may be easily computed from the characteristics of the network.

This approach is applicable to any large network, with an arbitrary distribution of exposures

and degrees. To provide some analytical insight into the impact of macroeconomic shocks on

the resilience to contagion, we will consider in the next two examples the case where both LRi

and γi are constant and equal to LR and γmin respectively. Figures for the lending ratio LR

have been given by [77, 150]. We will take LR = 20% and γmin = 10%.

Then the fraction of capital lost in the stress scenario is given by

Z =
S

γmin
(1 − LR),

so we have

γi(Z) = γmin(1 − Z)ϵi.

One can observe that in this model, if Z = 1, a trivial global cascade ensues, in which all nodes

are fundamental defaults: ∀i, γi(Z) = 0. However, as we shall see in the examples in the next

sections, a sharp transition in the magnitude of the cascade occur for a threshold value of Z

well below 1, which depends on the network characteristics.

An example of infinite network.

We first apply the results to an infinite random scale-free network. Such a network may be ob-

tained as the limit when n→ ∞ in Blanchard’s random graph model [27] (e.g., see Section 4.4.1).

The exposures of each bank with out-degree j are assumed to be independent, and follow a

Pareto law. The average exposure is an increasing deterministic function of j. We denote this

law Fj .

Note that in this case the limit function p(j, k, θ) does not depend on the in-degree k (we

denote this simply by p(j, θ)), and the function I, whose smallest zero determines the final
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fraction of defaults (see Theorem 4.8), simplifies to

I(π) =
∑
j

µ+(j)
λ(j)

λ

j∑
θ=0

p(j, θ)β(j, π, θ)

=
∑
j

µ+(j)
jα

E[(D+)α]

j∑
θ=0

p(j, θ)β(j, π, θ)

=
∑
j

µ̂+(j)

j∑
θ=0

p(j, θ)β(j, π, θ), (4.11)

with α = γ+/γ−, and µ̂+ the size-weighted out-degree distribution given by

µ̂+(j) = µ+(j)
jα

E[(D+)α]
,

which is the probability that the end node of a randomly chosen edge has an out-degree equal to j.

Since the out-degree distribution is a Pareto distribution, the size biased out-degree distribution

is also Pareto, but with a heavier tail with exponent γ+ − α. The resilience condition 4.5 then

simplifies to ∑
j

µ̂+(j)jp(j, 1) < 1. (4.12)

Under the macroeconomic shock Z, the function p(j, θ) is given by

p(j, θ) = P(X(θ) > γ(Z)

j∑
l=1

X(l) −
θ−1∑
l=1

(1 −R)X(l) ≥ 0),

where (X(l))jl=1 are i.i.d. random variables with law Fj under P and γ(Z) is given by (4.10).

The function p(j, θ) is plotted in Figure 4.4.3 for a given value of the macroeconomic shock Z.

The steep increase with the number of counterparty defaults θ shows how much the system is

prone to contagion, especially for the institutions whose assets are concentrated across a small

number of counterparties (i.e nodes with small out-degrees).

We consider that a node defaults in the first round with probability ϵ, such that p(j, 0) = ϵ,

for all j. We plot the function I given by (4.11) for several values of the macroeconomic shock Z

in Figure 4.7. We notice that the function I has three zeros for smaller values of Z, the smallest

being close to zero, and as Z reaches a threshold value Zc (in this case 42%) its only zero is

close to one.
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As stated in Theorem 4.8, if the resilience measure is positive, then with high probability,

as the initial fraction of defaults tends to 0, no global cascades appear. On the other hand, if

the resilience measure is negative, the skeleton of ‘contagious’ links percolates, i.e. represents a

positive fraction of the whole system, and we observe global cascades for any arbitrarily small

fraction ϵ > 0 of initial defaults chosen uniformly among all nodes. The verification of Theorem

4.8 is shown in Figure 4.8. In the non-resilient regime global cascades may occur no matter how
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Figure 4.8: Final fraction of defaults: infinite network

small the initial fraction of defaults is. On the contrary, in the resilient regime of the infinite

network, if the initial fraction of defaults is small enough, global cascades are not possible.

Therefore, the condition of positivity of the resilience measure is a necessary, but not sufficient

condition for non occurrence of global cascades.

A finite scale-free network.

We apply the results to a sample scale free network of 2000 nodes with heterogeneous degrees

and exposures, generated from Blanchard’s random graph model [27]. The empirical distribution

of the sample network’s degrees and exposures is shown in Figure 4.9, and its parameters were
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based on the analysis of the Brazilian [45] and Austrian [34] networks.
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Figure 4.9: (a) The distribution of out-degree has a Pareto tail with exponent 3.5, (b) The

distribution of the in-degree has a Pareto tail with exponent 2.5, (c) The distribution of the

exposures has a Pareto tail with exponent 2.1.

As Figure 4.10 shows, we obtain highly correlated asset and liabilities sizes and the aver-

age exposure is increasing with the number of debtors for the more connected nodes. These

properties are both observed in the empirical data.

In the finite sample, condition 4.12 translates to a condition on the average over all nodes of

their number of ‘contagious’ links with a weight proportional to the out-degree to the power α:

1

n

∑
i

wiqi < 1 (4.13)

with qi := #{j ∈ v | e(i, j) > ci} and wi := (d+(i))α∑
l(d

+(l))α
.
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Figure 4.10: (a) Assets and liabilities, (b) Average exposures and connectivity

If α is positive, so the more correlated the in-degree and the out-degree are, the more weight

is given to the most interconnected nodes. This confirms the intuition that the nodes posing

the highest systemic risk are those both overexposed and interconnected, but not necessarily the

largest in terms of balance sheet size.

The value p(j, 1) represents the limit fraction of contagious links entering nodes with out-

degree j in the limit network. Figure 4.11 shows the good accordance between the theoretical

values and the values computed in the sample network. This suggests that in practice, there is
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Figure 4.11: (a)Proportion of contagious links. (b)Resilience measure for varying size of macroe-

conomic shock in the sample and limit random network

no need to estimate the parameters of the limit distribution, but instead work directly with the

empirical data.
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Definition 4.13 (Empirical resilience measure). In a network (e, γ) of size n, we define the

empirical resilience measure

1 − 1

mn

∑
i

d−(i)qi, (4.14)

where mn is the total number of links in the network.

We conduct the following simulation on the sample network: two nodes, uniformly selected

among all nodes of the network initially default. Then for each value of the macroeconomic shock

Z and the corresponding sizes of the capital buffers, we compute the final fraction of defaults.

In light of Figure 4.8, in the infinite network, for an initial fraction of defaults representing 0.1%

of the network, the positivity of the resilience measure is also sufficient for global cascades not

to occur.

The results are plotted in Figure 4.12 along with the ’empirical’ resilience measure. We

observe that for a given network and set of initial defaults, there exists a threshold value of the

macroeconomic shock, beyond which the contagion spreads to essentially the whole network. If

the initial fraction of defaults is small enough, the threshold value is given by the value of Z

for which the empirical resilience measure becomes zero. This suggests the existence of a first

order phase transition marked by the point where the resilience measure becomes negative. We

thus verify Theorem 4.11 on the emergence of the giant vulnerable component, i.e. strongly

connected skeleton of contagious links, when the resilience function becomes negative.

By virtue of Theorem 4.8, the threshold value is smaller than the value of Z, for which the

empirical resilience measure becomes zero. Also, the proximity of those two values depends

strongly on the initial set of defaults. In the considered example, there is a good agreement

between the two values, as the initial fraction of defaults is very small.

4.5 Proofs

We denote by N+
n (i), the set of bank i’s debtors

N+
n (i) = {j ∈ v | en(i, j) > 0},

such that the out-degree of node i is d+n (i) = |N+
n (i)|, while the set of its creditors is

N−
n (i) = {j ∈ v | en(j, i) > 0},
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Figure 4.12: Final fraction of defaults triggered by an initial fraction of defaults representing

0.1% of the total network

and their number is the in-degree d−n (i) := |N−
n (i)|.

The representation of the financial system by a weighted random matrix of size n × n, as

in Definition 4.4, is equivalent to the representation by an unweighted graph chosen uniformly

among all graphs with the degree sequence (d+
n ,d

−
n ), in which we assign to node i’s out-going

edges the weights (en(i, j))j∈N+
n (i). We denote this random network by Gn(d+

n ,d
−
n , en). A stan-

dard method for studying random graphs with prescribed degree distributions, as we saw in the

last chapters, is to consider the related multigraph with the same degree sequence, constructed

by the configuration model (denoted by G∗
n(d+

n ,d
−
n , en)), and then condition on this multigraph

being simple, e.g., see Section 1.4.5.

It is quite easy to see that, conditional on the resulting multigraph being a simple graph, we ob-

tain a uniformly distributed random digraph with the given degree sequence, i.e., Gn(d+
n ,d

−
n , en).

In particular any property that holds w.h.p. on the random multigraph G∗
n(d+

n ,d
−
n , en), it

holds w.h.p. on the random graph Gn(d+
n ,d

−
n , en) provided

lim inf
n→∞

Pn(G∗
n(d+

n ,d
−
n , en) is simple) > 0. (4.15)
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In recent work (c.f. see Theorem 1.19 in Chapter 1), Janson [104] has studied the probability

of the random multigraph to be simple. One can translate the same proof to the directed case,

and shows that the condition
∑n

i=1(d
+
n (i))2 + (d−n (i))2 = O(n) implies (4.15). Indeed in the

non-directed case, Janson [104] shows that when m(n) :=
∑n

i=1 d
(n)
i → ∞, one has

P(G∗(n, (di)
n
1 ) is simple) = exp

−1

2

∑
i

λii −
∑
i<j

(λij − log(1 + λij))

+ o(1),

where for 1 ≤ i, j ≤ n; λij :=

√
di(di−1)dj(dj−1)

m(n) ; in particular λii = di(di−1)

m(n) . The proof of these

results is based on counting vertices with at least one loop and pairs of vertices with at least two

edges between them, disregarding the number of parallel loops or edges. The same argument

applies to the directed case, and one can show that when mn :=
∑n

i=1 d
+
n (i) =

∑n
i=1 d

−
n (i) → ∞,

then

P(G∗
n(d+

n ,d
−
n , en) is simple) = exp

−1

2

∑
i

λii −
∑
i<j

(λij − log(1 + λij))

+ o(1),

where for 1 ≤ i, j ≤ n; λij =

√
d+n (i)d−n (i)d+n (j)d−n (j)

mn
; in particular λii = d+n (i)d−n (i)

mn
.

Then our strategy is to study contagion on G∗
n(d+

n ,d
−
n , en) endowed with the sequence of

capital ratios γn, verifying conditions on the degree sequence for the assumption above (4.15)

to hold, and then translate all results holding w.h.p. to the random financial system as defined

in Definition 4.4.

We identify from now on the notion of a graph and that of a matching of the set of all

in-coming half-edges and the set of all out-going half-edges.

Remark 4.14. One can observe that a uniform matching on a set can be obtained sequentially:

choose an in-coming half-edge according to any rule (random or deterministic), and then choose

the corresponding out-going half-edge uniformly over the unmatched out-going half-edges. The

configuration model is particularly appropriate for the study of epidemics, as we saw in the last

chapter, since the in-coming half-edges can be chosen sequentially, when epidemics spreads to

their corresponding node.
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4.5.1 Coupling

We are given the set of nodes [1, . . . , n], and their sequence of degrees (d+
n ,d

−
n ). For each node

i, we fix an indexing of its out-going and in-coming half-edges, ranging in [1, . . . , d+n (i)], and

[1, . . . , d−n (i)] respectively. Furthermore, all out-going half-edges are given a global label in the

range [1, . . . ,mn], with mn the total number of out-going (in-coming) half-edges. Similarly, all

in-coming half-edges are given a global label in the range [1, . . . ,mn].

For a set A, we denote by ΣA the set of permutations of A. For the sequence of edge weights

and capital ratios, (en, γn), we generate the random graph G̃n(d+
n ,d

−
n , en, γn), by the following

algorithm:

1. For each node i, choose a permutation τn(i) ∈ ΣN+
n (i) uniformly at random.

2. Color all in-coming and out-going half-edges in black. Define the set of initially defaulted

nodes

D0 :=
∪

i,γn(i)=0

{i}.

Set for all nodes in [1, . . . , n]\D0, ci = γn(i)
∑

l∈N+
n (i) en(i, l).

3. At step k ≥ 1, if the set of in-coming black half-edges belonging to nodes in Dk−1 is empty,

denote Df the set Dk−1. Otherwise:

(a) Choose among all in-coming black half-edges of the nodes in Dk−1, the in-coming

half-edge with the lowest global label and color it in red.

(b) Choose a node i with probability proportional to its number of black out-going half-

edges and set πn(k) = i. Let i have l− 1 out-going half-edges colored in red. Choose

its τi(l)-th out-going half-edge and color it in red. If the node i /∈ Dk−1 and the

weight (1 − R)en(i, τi(l)) is larger than i’s remaining capital then Dk = Dk−1
∪
{i}.

Otherwise, the capital of node i becomes ci − (1 −R)en(i, τi(l)).

(c) Match node i’s τi(l)-th out-going half-edge to the in-coming half-edge selected at step

(3a) to form an edge.

4. Choose a random uniform matching of the remaining out-going half-edges and match them

to the remaining in-coming half-edges in increasing order and color them all in red.
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Lemma 4.15. The random graph G̃n(d+
n ,d

−
n , en, γn) has the same distribution as G∗

n(d+
n ,d

−
n , en).

Furthermore the set Df at the end of the above algorithm is the final set of defaulted nodes in

the graph G̃n(d+
n ,d

−
n , en, γn), endowed with the exposures en and capital ratios γn.

Proof. The second claim is trivial. Let us prove the first claim. We denote by σ+n and σ−n the

random permutations in Σ[1,...,mn], representing the order in which the above algorithm selects

the in-coming / out-going edges. At step k of the above construction, in-coming half-edge with

global label σ−n (k) is matched to out-going half-edge with global label σ+n (k) to form an edge.

The permutation σ+n is determined by the set of permutations (τn(i))i=1,...,n and the sequence

πn of size mn, representing the sequence of nodes selected at Step k-(3b) of the algorithm (each

node i appears in sequence πn exactly d+n (i) times). It is easy to see that σ+n is a uniform

permutation among all permutations in Σ[1,...,mn], since (τn(i))i=1,...,n are uniformly distributed

and at each step of the algorithm we choose a node with probability proportional to its black

out-going half-edges. On the other hand, the value of σ−n (k) depends in a deterministic manner

on

(en, γn, σ
+
n (1), . . . , σ+n (k − 1)).

The out-going half-edge with global label j is matched with the in-coming half-edge with

global label (σ−n ◦ (σ+n )−1)(j). In order to prove our claim it is enough to prove that the

permutation (σ−n ◦ (σ+n )−1) is uniformly distributed among all permutations of mn. Indeed, for

an arbitrary permutation ξ belonging to the set Σ[1,...,mn] we have that

P
(
σ+n (j) = ξ−1(σ−n (j)) | σ+n (1), . . . , σ+n (j − 1) , σ+n (k) = ξ−1(σ−n (k)) for all k < j

)
=

1

mn − j + 1
.

Conditional on the knowledge of (σ+n (1), . . . , σ+n (j − 1)), σ−n (j) is deterministic. Also, by condi-

tioning on : ∀k < j, σ+n (k) = ξ−1(σ−n (k)), then

ξ−1(σ−n (j)) ∈ T := [1, . . . ,m]\{σ+n (1), . . . , σ+n (j − 1)},

of cardinal mn − j + 1. In the above algorithm, σ+n (j) has uniform law over T . Then the

probability to chose ξ−1(σ−n (j)) is 1
mn−j+1 .

By the law of iterated expectations, we obtain that

P(σ−n ◦ (σ+n )−1 = ξ) = P(σ+n = ξ−1 ◦ σ−n ) =
1

mn!
.
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This and the fact that the last step of the algorithm is a conditionally uniform match conclude

the proof.

Corollary 4.16. We can find the final set of defaulted nodes Df of the above algorithm in the

following manner: once the permutation τn(i) is chosen, assign to each node its corresponding

threshold θn(i) = Θ(i, τn(i), en, γn) as in Definition 4.3, and forget everything about (en, γn).

Now replace Step (3b) of the algorithm by the fact that node i defaults the first time it has θn(i)

out-going half-edges colored in red, i.e., at step

inf{k ≥ 1, s.t. θn(i) = #{1 ≤ l ≤ k, πn(l) = i}}.

We denote by G̃n(d+
n ,d

−
n , θn) the random graph resulting from this modified algorithm.

Let Nn(j, k, θ) denote the number of nodes with degree (j, k), and threshold θ after choosing

uniformly the random permutations τn in the above algorithm.

Lemma 4.17. We have
Nn(j, k, θ)

n

p→ µ(j, k)p(j, k, θ),

as n tends to infinity.

Proof. For any node i with degree (j, k), the probability that its random threshold Θ(i, τn(i), en, γn),

is equal to θ is

νn(i, θ) :=
#{τ ∈ ΣN+

n (i) | Θ(i, τ, en, γn) = θ}
j!

.

Then we have

Nn(j, k, θ) =
∑

i, d+n (i)=j, d−n (i)=k

Ber(νn(i, θ)).

By Assumption 4.7 we have

E[Nn(j, k, θ)/n] = µn(j, k)pn(j, k, θ)
n→∞→ µ(j, k)p(j, k, θ),

and

Var[Nn(j, k, θ)/n] =

∑
i, d+n (i)=j, d−n (i)=k νn(i, θ)(1 − νn(i, θ))

n2
n→∞→ 0.

Now it is easy to conclude the proof by Chebysev’s inequality.
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4.5.2 Markov chain for contagion dynamics

In the previous section, we have replaced the description based on default rounds, given in

section (4.2.2), by an equivalent one based on successive bilateral interactions. By interaction

we mean coupling an in-coming edge with an out-going edge. At each step of this algorithm,

we have one interaction only between two banks, yielding at most one default. This allows for

a simpler Markov chain description, while having the same final set of defaults.

We describe in what follows the contagion process on the unweighted graph G̃n(d+
n ,d

−
n , θn),

with the sequence of random thresholds (θn(i) = Θ(i, τn(i), en, γn))1≤i≤n in terms of the dy-

namics of a Markov chain.

At any given time t banks are partitioned into two sets, defaulted Dn(t) and solvent Sn(t).

We describe our Markovian system in terms of:

• Dj,k,θ
n (t), the number of defaulted banks at time t with degree (j, k) and default threshold

θ,

• Sj,k,θ,l
n (t), l < θ ≤ j, the number of solvent banks with degree (j, k), default threshold θ

and l defaulted debtors before time t.

We can introduce further variables

• Dn(t): the number of defaulted banks at time t,

• D+
n (t): the number of black out-going edges belonging to defaulted banks,

• D−
n (t): the number of black in-coming edges belonging to defaulted banks,

• S+
n (t): the number of black out-going edges belonging to solvent banks at time t,

for which it is easy to see that the following identities hold:

S+
n (t) =

∑
j,k

∑
0≤l<θ≤j

(j − l)Sj,k,θ,l
n (t),

D−
n (t) =

∑
j,k,0≤θ≤j

kDj,k,θ
n (t) − t,

Dn(t) =
∑

j,k,0≤θ≤j

Dj,k,θ
n (t).
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Because at each step we color in red one out-going edge and the number of black out-going edges

at time 0 is mn, the number of black out-going edges at time t will be mn − t and we have

D+
n (t) + S+

n (t) = mn − t.

By definition, Yn(t) =
(
Dj,k,θ

n (t), Sj,k,θ,l
n (t)

)
j,k,0≤l<θ≤j

represents a Markov chain. Let

(Fn,t)t≥0 be its natural filtration. Let us define the operator ∨ as

x ∨ y = max(x, y).

We define the stopping time Tn, which represents the time the default cascade ends

Tn = inf{0 ≤ t ≤ mn, D
−
n (t) = 0}. (4.16)

The final number of defaulted banks will be Df := Dn(Tn).

We write the transition probabilities of the Markov chain. For t < Tn, there are three

possibilities for the partner B of an in-coming edge of a defaulted node A at time t+ 1:

1. B is in default, the next state is Yn(t+ 1) = Yn(t).

2. B is solvent, has degree (j, k) and default threshold θ, and this is the (l + 1)-th deleted

out-going edge and l + 1 < θ. The probability of this event is (j−l)Sj,k,θ,l
n (t)

mn−t . The changes

for the next state will be

Sj,k,θ,l
n (t+ 1) = Sj,k,θ,l

n (t) − 1,

Sj,k,θ,l+1
n (t+ 1) = Sj,k,θ,l+1

n (t) + 1.

3. B is solvent, has degree (j, k) and default threshold θ and this is the θ-th deleted out-going

edge. Then with probability (j−θ+1)Sj,k,θ,θ−1
n (t)

mn−t we have

Dj,k,θ
n (t+ 1) = Dj,k,θ

n (t) + 1,

Sj,k,θ,θ−1
n (t+ 1) = Sj,k,θ,θ−1

n (t) − 1.

Let ∆t be the difference operator:

∆tY := Y (t+ 1) − Y (t).
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We obtain the following equations for the expectation of Yn(t + 1), conditional on Fn,t, by

averaging over the possible transitions:

E
[
∆tS

j,k,θ,0
n |Fn,t

]
= −jS

j,k,θ,0
n (t)

mn − t
,

E
[
∆tS

j,k,θ,l
n |Fn,t

]
=

(j − l + 1)Sj,k,θ,l−1
n (t)

mn − t
− (j − l)Sj,k,θ,l

n (t)

mn − t
,

E
[
∆tD

j,k,θ
n |Fn,t

]
=

(j − θ + 1)Sj,k,θ,θ−1
n (t)

mn − t
. (4.17)

The initial condition is

Sj,k,θ,l
n (0) = Nn(j, k, θ)11(l = 0)11(θ > 0),

Dj,k,θ
n (0) = Nn(j, k, 0)11(θ = 0).

We will show in the next section that the trajectory of these variables for t ≤ Tn is close to

the solution of the deterministic differential equations suggested by equations (4.17) with high

probability.

4.5.3 Proof of Theorem 4.8

The proof of Theorem 3.2 is mainly based on Theorem A.10.

First we define the following set of differential equations denoted by (DE):

(sj,k,θ,0)′(τ) = −js
j,k,θ,0(τ)

λ− τ
,

(sj,k,θ,l)′(τ) =
(j − l + 1)sj,k,θ,l−1(τ)

λ− τ
− (j − l)sj,k,θ,l(τ)

λ− τ
,

(δj,k,θ)′(τ) =
(j − θ + 1)sj,k,θθ−1 (τ)

λ− τ
,

with initial conditions

sj,k,θ,l(0) = µ(j, k)p(j, k, θ)11(l = 0)11(θ > 0),

δj,k,θ(0) = µ(j, k)p(j, k, 0)11(θ = 0).

Lemma 4.18. The system of differential equations (DE) admits the unique solution

y(τ) :=
(
δj,k,θ(τ), sj,k,θ,l(τ)

)
j,k,0≤l<θ≤j

,
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in the interval 0 ≤ τ < λ, with

sj,k,θ,l(τ) := µ(j, k)p(j, k, θ)

(
j

l

)
(1 − τ

λ
)j−l(

τ

λ
)l11{θ>0},

δj,k,θ(τ) := µ(j, k)p(j, k, θ)P
(

Bin(j,
τ

λ
) ≥ θ

)
. (4.18)

Proof. We denote by DEK , the set of differential equations defined above, restricted to j∨k < K,

and by b(K) the dimension of the restricted system. Since the derivatives of the functions(
δj,k,θ(τ), sj,k,θ,l(τ)

)
j∨k<K,0≤l<θ≤j

depend only on τ and the same functions, by a standard

result in the theory of ordinary differential equations [99, Chapter 2, Theorem 11], there is an

unique solution of DEK in any domain of the type (−ϵ, λ)×R, with R a bounded subdomain of

Rb(K) and ϵ > 0. The solution of (DE) is defined to be the set of functions solving all the finite

systems (DEK)K≥1.

We solve now the system (DE). Let u = u(τ) = −ln(λ − τ). Then u(0) = −ln(λ), u is

strictly monotone and so is the inverse function τ = τ(u). We write the system of differential

equations (DE) with respect to u:

(sj,k,θ,0)′(u) = −jsj,k,θ,0(u),

(sj,k,θ,l)′(u) = (j − l + 1)sj,k,θ,l−1(u) − (j − l)sj,k,θ,l(u),

(δj,k,θ)′(u) = (j − θ + 1)sj,k,θθ−1 (u).

Then we have

d

du
(sj,k,θ,l+1e(j−l−1)(u−u(0))) = (j − l)sj,k,θ,l(u)e(j−l−1)(u−u(0)),

and by induction, we find

sj,k,θ,l(u) = e−(j−l)(u−u(0))
l∑

r=0

(
j − r

l − r

)(
1 − e−(u−u(0))

)l−r
sj,k,θr (u(0)).

By going back to τ , we have

sj,k,θ,l(τ) = (1 − τ

λ
)j−l

l∑
r=0

sj,k,θr (0)

(
j − r

l − r

)
(
τ

λ
)l−r.

Then, by using the initial conditions, we find

sj,k,θ,l(τ) = µ(j, k)p(j, k, θ)

(
j

l

)
(1 − τ

λ
)j−l(

τ

λ
)l11{θ>0}.
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We have

(δj,k,θ)′(τ) =
(j − θ + 1)sj,k,θθ−1

λ(1 − τ
λ)

=
1

λ
(j − θ + 1)µ(j, k)p(j, k, θ)

(
j

θ − 1

)
(1 − τ

λ
)j−θ(

τ

λ
)θ−1

=
jµ(j, k)

λ
p(j, k, θ)P(Bin(j − 1,

τ

λ
) = θ − 1).

Finally, by using the fact that

∂

∂p
P(Bin(N, p) > K) = NP(Bin(N − 1, p) = K),

and by the initial conditions, we find that

δj,k,θ(τ) = µ(j, k)p(j, k, θ)P
(

Bin(j,
τ

λ
) ≥ θ

)
.

Let us define, for 0 ≤ τ ≤ λ;

δ−(τ) :=
∑
j,k,θ

kδj,k,θ(τ) − τ, and

δ(τ) :=
∑
j,k,θ

δj,k,θ(τ),

with δj,k,θ given in Lemma 4.18. We have

δ−(τ) =
∑
j,k,θ

kδj,k,θ(τ) − τ

=
∑

j,k,θ≤j

kµ(j, k)p(j, k, θ)P
(

Bin(j,
τ

λ
) ≥ θ

)
− τ (4.19)

= λ(I(
τ

λ
) − τ

λ
),

and

δ(τ) :=
∑
j,k,θ

µ(j, k)p(j, k, θ)P
(

Bin(j,
τ

λ
) ≥ θ

)
. (4.20)

We now proceed to the proof of Theorem 4.8, whose aim is to approximate the value

Dn(Tn)/n, as n → ∞. We base the proof on Theorem A.10. We first need to bound the

contribution of higher order terms in the infinite sums (4.19) and (4.20).
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Let us fix an arbitrary constant ϵ > 0. By Condition 4.6, we know

λ =
∑
j,k

kµ(j, k) =
∑
j,k

jµ(j, k) ∈ (0,∞).

Then, there exists an integer Kϵ, such that∑
k≥Kϵ

∑
j

kµ(j, k) +
∑
j≥Kϵ

∑
k

jµ(j, k) < ϵ,

which implies that ∑
j∨k≥Kϵ

kµ(j, k) < ϵ.

It follows that for all 0 ≤ τ ≤ λ:∑
j∨k≥Kϵ,0≤θ≤j

kµ(j, k)p(j, k, θ)P
(

Bin(j,
τ

λ
) ≥ θ

)
< ϵ. (4.21)

The number of vertices with degree (j, k) is nµn(j, k). Again, by Condition 4.6,∑
j,k

kµn(j, k) =
∑
j,k

jµn(j, k) → λ ∈ (0,∞).

Therefore, for n large enough,
∑

j∨k≥Kϵ
kµn(j, k) < ϵ, and for all 0 ≤ t ≤ mn:∑

j∨k≥Kϵ,0≤θ≤j

kDj,k,θ
n (t)/n < ϵ. (4.22)

For K ≥ 1, we denote

yK :=
(
δj,k,θ(τ), sj,k,θ,l(τ)

)
j∨k<K, 0≤l<θ≤j

, and

Y K
n :=

(
Dj,k,θ

n (τ), Sj,k,θ,l
n (τ)

)
j∨k<K, 0≤l<θ≤j

,

both of dimension b(K), where δj,k,θ(τ) and sj,k,θ,l(τ) are solutions to the system (DE).

We now define the domain Ω(ϵ) as

Ω(ϵ) = {
(
τ, yKϵ

)
∈ Rb(Kϵ)+1 : − ϵ < δj,k,θ < 1 , −ϵ < sj,k,θ,l < 1,

− ϵ < τ < λ− ϵ ,
∑

j∨k<Kϵ

∑
θ

kδj,k,θ − τ > ϵ}.
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Let T
(n)
Ω be the stopping time for Ω which is the first time t when

(t/n, Yn) /∈ Ω.

We will use Theorem A.10. The domain Ω(ϵ) is a bounded open set which contains all initial

values of variables which may happen with positive probability. Each variable is bounded by

a constant times n (C0 = 1). By the definition of our process, the Boundedness Hypothesis is

satisfied with β(n) = 1. Trend Hypothesis is satisfied by some λ1(n) = O(1/n). Finally the

third condition (Lipschitz Hypothesis) of the theorem is also satisfied since λ − τ is bounded

away from zero. Then by Theorem A.10, and by using Lemma 4.17 for convergence of initial

values, we have

YKϵ
n (t) = nyKϵ(t/n) +O(n3/4), (4.23)

with probability 1 − O(n7/4exp(−n−1/4)) uniformly for all t ≤ nσ(n) where σ = σ(n) is the

supremum of those τ for which the solution of the differential equations (DE) can be extended

before reaching within l∞-distance Cn−1/4 of the boundary of Ω(ϵ).

Then using (4.21) and (4.22), we have

sup
t≤nσ

∣∣D−
n (t)/n− δ−(t/n)

∣∣ = sup
t≤nσ

|
∑
j,k

∑
θ≤j

k(Dj,k,θ
n (t)/n− δj,k,θ(t/n))|

≤ sup
t≤nσ

∑
j,k

∑
θ≤j

k
∣∣∣Dj,k,θ

n (t)/n− δj,k,θ(t/n)
∣∣∣

≤ sup
t≤nσ

∑
j∨k≤Kϵ

∑
θ≤j

k
∣∣∣Dj,k,θ

n (t)/n− δj,k,θ(t/n)
∣∣∣+ 2ϵ

≤ op(1) + 2ϵ, (4.24)

and similarly,

sup
t≤nσ

|Dn(t)/n− δ(t/n)| ≤ sup
t≤nσ

∑
j∨k≤Kϵ

∑
θ≤j

∣∣∣Dj,k,θ
n (t)/n− δj,k,θ(t/n)

∣∣∣+ 2ϵ

≤ op(1) + 2ϵ. (4.25)

To analyze σ, we need to determine which constraint is violated when the solution reaches the

boundary of Ω(ϵ). It cannot be the first two constraints, because (4.23) must give asymptotically

feasible values of Yn until the boundary is approached. It remains to determine which of the

last two constraints is violated when τ̂ = σ. There are two cases:
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First assume I(π) > π for all π ∈ [0, 1), i.e., π∗ = 1. Then we have δ−(τ) > 0 for all τ ∈ [0, λ),

which is ∑
j,k,θ

kδj,k,θ(τ) − τ > 0.

We now note that
∑

j∨k<Kϵ

∑
θ kδ

j,k,θ(τ) − τ ≤ ϵ, implies

I(τ/λ) − τ/λ ≤ ϵ/λ.

Then by continuity of the function I we conclude that in this case we can choose ϵ small enough,

such that for any ϵ0, and for n large enough, we will have w.h.p. σ > λ− ϵ0. Then we conclude

Tn > n(λ− ϵ0), which gives us

Dn(Tn) = n− op(n).

Now consider the case π∗ < 1, and furthermore π∗ is a stable fixed point of I(π). Then

by definition of π∗ and by using the fact that I(1) ≤ 1, we have I(π) < π for some interval

(π∗, π∗ + π̃). Then δ−(τ) is negative in an interval (τ̂ , τ̂ + τ̃), with τ̂ = λπ∗.

We apply Corollary A.14 with D̂ the domain Ω(ϵ) defined above, and the domain D replaced

by Ω′(ϵ), which is the same as Ω(ϵ) except that the last constraint is omitted:

Ω′(ϵ) = {
(
τ, yKϵ

)
∈ Rb(Kϵ)+1 : −ϵ < δj,k,θ < 1 , −ϵ < sj,k,θ,l < 1, −ϵ < τ < λ− ϵ}.

This gives us the convergence upto the point where the solution leaves Ω′(ϵ) or when

∑
j∨k<Kϵ

∑
θ

kδj,k,θ(τ) − τ > ϵ

is violated. Since δ−(τ) begins to go negative after τ̂ , and by (4.24) it follows that

∑
j∨k<Kϵ

∑
θ

kδj,k,θ(τ) − τ > ϵ

must be violated almost asymptotic surely. Then it is easy to conclude (by choosing ϵ small

enough) that in this case for any ϵ′ > 0, and for n large enough, we will have w.h.p. Tn/n ∈
(τ̂ − ϵ′, τ̂ + ϵ′), which gives Tn/n

p→ τ̂ . We conclude by (4.25), Dn(Tn)/n
p→ δ(τ̂). It is now clear

that (4.20) implies the desired result.
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4.5.4 Proof of Theorem 4.11

The strong connectivity for spaces of sparse random directed graphs with prescribed degree

sequence has been studied by Cooper and Frieze in [47], e.g., see Theorem 1.34 in Chapter 1.

Let λn represent the average degree (then by Assumption 4.6, λn → λ as n → ∞), and

µn(j, k) represent the empirical distribution of the degrees, which is furthermore assumed to

be proper (satisfy Condition 1.33), then Theorem 1.34 states that if the average (size-biased)

directed degree ν in the graph is greater than 1, i.e.,

ν :=
∑
j,k

jk
µ(j, k)

λ
> 1, (4.26)

then the random directed graph contains w.h.p. a strongly connected giant component.

We remark that Theorem 1.34 is given under stronger assumptions on the degree sequence,

adding to Assumption 4.6 the following three conditions, in which ∆n denotes the maximum

degree:

• ρn := max
(∑

i,j
i2jµn(i,j)

λn
,
∑

i,j
j2iµn(i,j)

λn

)
= o(∆n), if ∆n → ∞;

• ∆n ≤ n1/12

logn ;

• As n→ ∞, νn :=
∑

j,k jk
µn(j,k)

λn
→ ν ∈ (0,∞).

A first reason for adding these conditions in [47] is to ensure that Equation (4.15) holds.

However, following Janson [104], the restricted set of conditions 4.6 is sufficient. The second

reason is that [47] gives a more precise results on the structure of the giant component, e.g., see

Section 1.4.5. For our purpose, to find the sufficient condition for the existence of a strongly

connected giant component, we show that these supplementary conditions may be dropped.

It is easy to see that a bounded degree sequence (i.e., ∆n = O(1)) which satisfies Assumption

4.6 is proper. We use this fact in the following.

Lemma 4.19. Consider the random directed graph G(n,d+
n ,d

−
n ), where the degree sequence

satisfies Assumption 4.6. If ∑
j,k

jk
µ(j, k)

λ
> 1, (4.27)

then the graph contains w.h.p. a strongly connected giant component.
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Proof. First note that by the second moment property (in Assumption 4.6) and Fatou’s lemma,

there exists a constant C such that∑
j,k

jkµ(j, k) ≤
∑
j,k

(j2 + k2)µ(j, k)

≤ lim inf
n→∞

∑
j,k

(j2 + k2)µn(j, k) ≤ C.

It follows that for arbitrary ϵ > 0, there exists a constant ∆ϵ such that∑
j∧k>∆ϵ

jkµ(j, k) ≤ ϵ.

Thus (assuming (4.27) holds), by choosing ϵ small enough, there exists a constant ∆ϵ such that

∑
j∧k≤∆ϵ

jk
µ(j, k)

λ
> 1.

We now modify the random graph such that the maximum degree is equal to ∆ϵ. For every

node i such that d+n (i)∧d−n (i) > ∆ϵ, all its in-coming (resp. out-going) half-edges are transferred

to new nodes with degree (0, 1) (resp. with degree (1, 0)).

Since these newly created nodes cannot be part of any strongly connected component, it

follows that, if the modified graph contains such a component, then necessarily the initial graph

also does. It is then enough to evaluate Equation (4.26) for this modified graph, which by

construction verifies the Assumption 4.6, for the new empirical distribution µ̃ with the average

degree λ̃. Also, since the degrees of the modified graph are bounded, the supplementary condi-

tions above also hold, i.e., the degree sequence is proper, and we can apply Cooper and Frieze’s

result.

We are only left to show that
∑

j,k jk
µ̃(j,k)

λ̃
> 1. Indeed, we have that

∑
j,k

jk
µ̃(j, k)

λ̃
=

∑
j∧k≤∆ϵ

jk
µ̃(j, k)

λ̃

=
∑

0<j,k≤∆ϵ

jk
µ̃(j, k)

λ̃

=
∑

0<j,k≤∆ϵ

jk
µ(j, k)

λ
> 1.
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The last equality follows from the fact that for 0 < j, k ≤ ∆ϵ, we have

µ̃(j, k)

λ̃
=
µ(j, k)

λ
.

This is true since the total number of edges, and the number of nodes with degree j, k for

0 < j, k ≤ ∆ϵ, stays unmodified.

We now proceed to the proof of Theorem 4.11. Our proof is based on ideas applied in

[72, 103] for site and bond percolation in configuration model (c.f. see Section 1.4.4).

Our aim is to show that the skeleton of contagious links in the random financial network

is still described by configuration model, with a degree sequence verifying Assumption 4.6, and

then apply Lemma 4.19.

For each node i, the set of contagious out-going edges is denoted by Cn(i), which is

Cn(i) := {1 ≤ l ≤ d+n (i) : (1 −R)en(i, l) > γn(i)}.

Let c+n (i) be their number, i.e., c+n (i) := #Cn(i).

We denote by Gc
n the unweighted skeleton of contagious links in the random financial network

Gn(d+
n ,d

−
n , en), endowed with the capital ratios γn.

In order to characterize the law of Gc
n, we adapt Janson’s method (see Section 1.4.4) for the

directed case.

Lemma 4.20. The unweighted skeleton of contagious links Gc
n has the same law as the random

graph constructed by the following algorithm:

1. Let ñ := n+mn−
∑n

i=1 c
+
n (i). Replace the degree sequence (d+n , d

−
n ) of size n by the degree

sequence (d̃+
ñ , d̃

−
ñ ) of size ñ, with

∀ 1 ≤ i ≤ n, d̃+ñ (i) = c+n (i), d̃−ñ (i) = d−n (i),

∀ n+ 1 ≤ i ≤ ñ, d̃+ñ (i) = 1, d̃+ñ (i) = 0.

2. Construct the random unweighted graph G∗
ñ(d̃+

ñ , d̃
−
ñ ) with ñ nodes, and the degree sequence

(d̃+
ñ , d̃

−
ñ ) by configuration model.

3. Delete n+ = ñ− n randomly chosen nodes with out-degree 1 and in-degree 0.
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Proof. The skeleton Gc
n can be obtained in a two-step “explosion” procedure, rather than di-

rectly removing all non-contagious links: first all non-contagious links in G∗
n(d+

n ,d
−
n , en) are

disconnected form their end nodes and transferred to newly created nodes of degree (1, 0). Then

delete all new nodes and their incident edges. Looking at graphs as configurations, and since

the first step changes the total number of nodes but not the number of half-edges, it is easy to

see that there is a one to one correspondence between the configurations before and after the

explosions. Then the graph after explosions is still described by the configuration model, and

thus has the same law as G∗
ñ(d̃+

ñ , d̃
−
ñ ). Finally, by symmetry the nodes with out-degree 1 and

in-degree 0 are equivalent, so one may remove randomly the appropriate number of them.

Note that since the degree sequence before the explosions verifies Assumption 4.6, so does

the degree sequence after explosions. Moreover, since we are interested in its strongly connected

component, and nodes of degrees (1, 0) will not be included, we can actually apply Lemma 4.19

to the random graph resulting by the above algorithm. Hence we study the strongly connected

component in the intermediate graph G∗
ñ(d̃+

ñ , d̃
−
ñ ).

Let us denote by lñ(j, k), the number of nodes with out-degree j and in-degree k in the graph

G∗
ñ(d̃+

ñ , d̃
−
ñ ), and by λ̃ñ, the average degree. Then the average (size-biased) directed degree in

this random graph is given by ν̃n :=
∑

j,k jklñ(j, k)/(λ̃ññ).

We first observe that λ̃ññ = mn, since the number of edges is unchanged after explosions.

For every k > 0, the quantity
∑

j jlñ(j, k) represents the number of out-going edges belonging

to nodes with in-degree k in the graph after explosions, which in turn represents the number of

contagious out-going edges belonging to nodes with in-degree k in the graph before explosions.

But so does
∑

j jpn(j, k, 1)nµn(j, k).

So we have for all k∑
j

j
lñ(j, k)

λññ
=

1

λññ

∑
j

jpn(j, k, 1)nµn(j, k)

=
∑
j

jpn(j, k, 1)
µn(j, k)

λn

n→∞→
∑
j

jp(j, k, 1)
µ(j, k)

λ
,

where the convergence holds by the second moment property in Assumption 4.6.

Applying Lemma 4.19 to the sequence of degrees in the graph after explosions shows that
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when ∑
k

k lim
n

∑
j

j
lñ(j, k)

λññ
=
∑
k

k
∑
j

jp(j, k, 1)
µ(j, k)

λ
> 1,

then with high probability there exists a strongly connected giant component in the skeleton of

contagious links. This completes the proof.

4.5.5 Appendix: Size of default cascade

In this section, we consider the structure of the skeleton of contagious links more in detail. Let

us define the susceptibility of a random financial network

χ(En, γn) :=
1

n

∑
v∈[1,...,n]

|C(v)|, (4.28)

with C(v) the default cluster of v containing all nodes from which v is reachable by a directed

path of contagious links.

The skeleton of contagious links is the subgraph obtained by retaining only the contagious

links in the initial network. Thus, if we consider the new degree sequence for this subgraph,

it is still a random graph chosen uniformly from all graphs with this degree sequence (e.g., see

Section 4.5.4), so we can still apply asymptotic results for the random configuration model.

In particular, Janson [105] shows that the susceptibility of the random graph with given ver-

tex degrees converges under mild conditions to the expected cluster size in the corresponding

branching process, which may be defined as a Galton-Watson branching process with initial

offspring ξ0 and general offspring ξ. We define

λ̃ :=
∑
j,k

jµ(j, k)p(j, k, 1),

the average number of contagious links and note that the fraction of contagious links is T := λ̃
λ .

The generating function of the initial offspring ξ0 is

G0(y) =
∑

k0,j,k≥k0

µ(j, k)

(
k

k0

)
(1 − T )k−k0T k0yk0 =

∑
j,k

µ(j, k)(1 − T + Ty)k,

while the generating function of the general offspring is

G(y) =
∑
j,k

jµ(j, k)p(j, k, 1)

λ̃
(1 − T + Ty)k.
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It is easy to see that G0 represents the generating function of the number of links pointing

into a randomly chosen node after bond percolation with probability T (each incoming edge is

removed with probability 1 − T independently of all other incoming edges). In terms of our

network model, G represents the generating function of the number of contagious links ending

in a node which is start of a randomly chosen contagious link. The probability that such a node

has degree (j, k) is given by a weighted version of µ: jµ(j,k)p(j,k,1)

λ̃
. We have that

E(ξ) = G′(1) =
∑
j,k

jµ(j, k)p(j, k, 1)

λ̃
kT =

∑
j,k

jkµ(j, k)

λ
p(j, k, 1),

and

E(ξ0) = G′
0(1) =

∑
j,k

kµ(j, k)T = λ̃.

For a branching process with initial offspring ξ0 and general offspring ξ, its susceptibility is

given by 1 + Eξ0
(1−Eξ)+ (see [105, Theorem 3.1]). By virtue of [105, Theorem 3.3] applied to the

skeleton of contagious links, under Conditions 4.6 and 4.7, the average cascade size converges

in probability (and in fact in L1, in the subcritical case when E(ξ) < 1) to the susceptibility of

the corresponding branching process. We have

• If the resilience measure is strictly positive,

χ(En, γn)
L1

→ χ∞ := 1 +

∑
j,k jµ(j, k)p(j, k, 1)

1 −
∑

j,k
jk
λ µ(j, k)p(j, k, 1)

.

• If the resilience measure is zero or negative,

χ(En, γn)
p→ ∞.

We show thus by a different method that the positivity of the resilience measure is a necessary

condition for the non-occurrence of global cascades: this condition is equivalent to the non-

explosion of the branching process associated to the skeleton of contagious links

E(ξ) < 1.

The full distribution of the size of the default cluster can be computed once the generating

functions G0 and G are known (see Bertoin and Sidoravicius [20, Theorem 1] which connects

the structure of clusters in random graphs with prescribed degree distributions to branching
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processes and Newman et al. [131] for the derivation in case of branching processes). We define

the generating function H of the size of the default cluster generated by a randomly chosen

contagious edge, which verifies the condition H(y) = yG(H(y)). The generating function H0 of

the size of a default cluster is then given by H0(y) = yG0(H(y)). If the resilience measure is

negative, then the probability of a large scale epidemic triggered by a single node is equal to the

explosion probability of the branching process. If we let y∗ be the smallest solution of

y =
∑
j,k

jµ(j, k)p(j, k, 1)

λ̃
(1 − T + Ty)k,

then the probability of a global cascade is given by

1 −
∑
j,k

µ(j, k)(1 − T + Ty∗)k.

This last formula confirms the observations in Gleeson [79] that the probability of occurrence

of a global cascade strongly depends on the out-degree distribution even when the average

cascade size does not, such as in cases where the degree distribution factorizes and the fraction

of contagious links does not depend on the out-degrees.

Discussion

We have proposed a framework for evaluating the impact of a macroeconomic shock on the

resilience of a banking network to contagion effects. Our approach complements existing stress

tests used by regulators and suggests to monitor the capital adequacy of each institution with

regard to its largest exposures. In practice, such a stress tests may be implemented in a decen-

tralized fashion by requesting banks to project the effect of a macroeconomic stress scenario on

their balance sheets, and report the quantities of interest -mainly the number of exposures ex-

ceeding capital in the stress scenario- regulator, who can then assess the resilience of the network

using our proposed resilience measure. Our results also suggest that one need not monitor/know

the entire network of counterparty exposures, but simply the subgraph of “contagious” links,

which is much smaller. Moreover, the regulator can efficiently contain contagion by focusing on

fragile nodes, especially those with high connectivity, and their counterparties. Higher capital

requirements could be imposed on them to reduce their number of contagious links, and insure

that the danger of phase transitions as described above is avoided.
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[78] A. Ganesh, L. Massoulié, and D. Towsley. The effect of network topology on the spread

of epidemics. In IEEE INFOCOM, pages 1455–1466, 2005.

[79] J. P. Gleeson. Mean size of avalanches on directed random networks with arbitrary degree

distributions. Physical Review E, 77(5):057101, 2008.

[80] A. V. Goltsev, F. V. de Abreu, S. N. Dorogovtsev, and J. F. F. Mendes. Stochastic cellular

automata model of neural networks. Available at http://arxiv.org/abs/0904.2189,

2009.

[81] P. D. Gregorio, A. Lawlor, P. Bradley, and K. A. Dawson. Exact solution of a jam-

ming transition: closed equations for a bootstrap percolation problem. Proceedings of the

National Academy of Sciences, 102:5669–5673, 2005.

[82] G. Grimmett. Percolation. Springer, Berlin, 2nd edition, 1999.

[83] G. Grimmett and H. Kesten. First-passage percolation, network flows and electrical resis-

tances. Probability Theory and Related Fields, 66:335–366, 1984. 10.1007/BF00533701.

[84] A. Gut. Probability: a graduate course. Springer, New York, 2005.
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Appendix A

Probabilistic Methods

In this appendix, we provide some classical probabilistic tools we need through this thesis. For

details and proofs of these results, we refer to [26, 12, 50, 90, 155].

A.1 Coupling

The coupling method is a fruitful probabilistic tool. Its range of applications is large: Markov

chain, renewal theory, perfect simulation or the Stein-Chen method. In this section, we will

record a few simple results on this method.

In general, two random variables X and Y are coupled when they are defined on the same

probability space. This means that there is one probability law P such that P(X ∈ E, Y ∈ F )

are defined for all events E and F . This is formalized in the following definition:

Definition A.1 (Coupling of random variables). The random variables (X̂1, ..., X̂n) are a cou-

pling of the random variables X1, ..., Xn when (X̂1, ..., X̂n) are defined on the same probability

space, and are such that the marginal distribution of X̂i is the same as the distribution of Xi

for all i = 1, ..., n, i.e., for all measurable subsets E of R, we have

P(X̂i ∈ E) = P(Xi ∈ E). (A.1)

Couplings are very useful in proving that random variables are related. The key point of

the above definition is that while the random variables X1, ..., Xn may be defined on different
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probability spaces, the coupled random variables (X̂1, ..., X̂n) are defined on the same probability

space. The coupled random variables (X̂1, ..., X̂n) are related to the original random variables

X1, ..., Xn by the fact that the marginal distributions of (X̂1, ..., X̂n) are equal to the random

variables X1, ..., Xn.

Theorem A.2 (Poisson limit for binomial random variables). Let {Ii}ni=1 be independent with

Ii ∼ Ber(pi), and let λ =
∑n

i=1 pi. Let X =
∑n

i=1 Ii, and let Y be a Poisson random variable

with parameter λ. Then, there exists a coupling (X̂, Ŷ ) of (X,Y ) such that

P(X̂ ̸= Ŷ ) ≤
n∑

i=1

p2i . (A.2)

Consequently, for every λ ≥ 0 and n ∈ N, there exists a coupling (X̂, Ŷ ), where X̂ ∼ Bin(n, λ/n)

and Ŷ ∼ Poi(λ) such that

P(X̂ ̸= Ŷ ) ≤ λ2

n
. (A.3)

A.2 Stochastic Domination

To compare random variables, we will rely on the notion of stochastic ordering, which is defined

as follows.

Definition A.3 (Stochastic domination). Let X and Y be two random variables, not necessarily

living on the same probability space. The random variable X is stochastically smaller than the

random variable Y when the inequality

P(X ≤ x) ≥ P(Y ≤ x) (A.4)

holds for all x ∈ R. We denote this by X ≤st Y .

Strassen’s Theorem shows that the stochastic ordering ≤st corresponds to the ordering ≤
through a coupling.

Theorem A.4. The random variable X is stochastically smaller than the random variable Y if

and only if there exists a coupling (X̂, Ŷ ) of X,Y such that

P(X̂ ≤ Ŷ ) = 1. (A.5)
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We now state two consequences of stochastic domination, that we will use later.

Theorem A.5. Suppose X ≤st Y . Then

(i) we have EX ≤ EY .

(ii) if g : R → R is non-decreasing, then g(X) ≤st g(Y ).

A.3 Probabilistic Bounds

We will often make use of a number of probabilistic bounds, which we will summarize in this

section.

Theorem A.6 (Markov inequality). Let X be a non-negative random variable with E[X] <∞.

Then

P(X ≥ a) ≤ E[X]

a
. (A.6)

Theorem A.7 (Chebysev inequality). Let X be a random variable with finite variance σ2. Then

for any real number α > 0,

P (|X − EX| ≥ α) ≤ σ2

α2
. (A.7)

We will often rely on bounds on the probability that a sum of independent random variables

is larger than its expectation. We consider a sequence of i.i.d. random variables {Xi, i ≥ 1}
distributed like X, taking values in R. Let Sn =

∑n
i=1Xi. We are interested in proving

exponential bounds for the right tail probability P(Sn ≥ tn) when t ≥ EX, as n → ∞. Similar

results are easily derived for left tails by considering {−Xi, i ≥ 1}. Let α > 0, then

P(Sn ≥ tn) = P(eαSn ≥ eαtn).

It follows using Markov’s inequality that

P(Sn ≥ tn) ≤ e−αtnEeαSn = e−αtn
n∏

i=1

EeαXi (A.8)

since the variables Xi are independent. We infer that

P(Sn ≥ tn) ≤ e−αtn+Λ(α)n,
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where Λ(α) := logEeαX is the cumulant generating function. So optimizing the choice of α, we

have

P(Sn ≥ tn) ≤ e−nΛ∗(t), (A.9)

where Λ∗(t) := supα>0 αt− Λ(α) is the Fenchel-Legendre (convex) dual of λ. The following

theorem states that the above upper bound is tight. The proof can be found in [50].

Theorem A.8 (Cramér). Assume that Λ(α) < ∞ for some α > 0. Let t ≥ EX. Then, as

n→ ∞,

P(Sn ≥ tn) = e−nΛ∗(t)+o(n). (A.10)

For more background on large deviations, we refer to [50, 96].

We now state Azuma-Hoeffding inequality concerning martingales. For more details on

martingales, we refer the reader to [153].

Theorem A.9 (Azuma-Hoeffding inequality). Let X0, X1, ..., Xt be a martingale such that Xi−
Xi−1 ≤ ci, for 1 ≤ i ≤ t, for constants ci. Then for any α > 0,

P(|Xt −X0| ≥ α) ≤ 2 exp

(
− α2

2
∑t

i=1 c
2
i

)
. (A.11)

A.4 The Differential Equation Method

In this section we briefly present a method introduced by Wormald in [154] for the analysis

of a discrete random process by using differential equations. In particular we recall a general

purpose theorem for the use of this method. This method has been used to analyze several kinds

of algorithms on random graphs and random regular graphs (see e.g., [38, 48, 129, 155]).

Recall that a function f(u1, ..., uj) satisfies a Lipschitz condition on D ∈ Rj if a constant

L > 0 exists with the property that

|f(u1, ..., uj) − f(v1, ..., vj)| ≤ L max
1≤i≤j

|ui − vi|

for all (u1, ..., uj) and (v1, ...., vj) in D. For variables Y1, ..., Yb and for D ∈ Rb+1, the stopping

time TD(Y1, ..., Yb) is defined to be the minimum t such that

(t/n;Y1(t)/n, ..., Yb(t)/n) /∈ D.
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This is written as TD when Y1, ..., Yb are understood from the context.

The following theorem is the Theorem 5.1 of [155]. In it, ”uniformly” refers to the convergence

implicit in the o() terms. Hypothesis (1) ensures that Yt does not change too quickly throughout

the process. Hypothesis (2) tells us what we expect for the rate of change to be, and property

(3) ensures that this rate does not change too quickly.

Theorem A.10 (Wormald [155]). Let b be given (b is the number of variables). For 1 ≤ l ≤ b,

suppose Y
(n)
l (t) is a sequence of real-valued random variables, such that 0 ≤ Y

(n)
l (t) ≤ C0n for

some constant C0, and Ht be the history of the sequence, i.e., the sequence{
Y

(n)
j (k), 0 ≤ j ≤ b, 0 ≤ k ≤ t

}
.

Suppose also that for some bounded connected open set D ⊆ Rb+1 containing the intersection

of {(t, z1, ..., zb) : t ≥ 0} with some neighborhood of

{(0, z1, ..., zb) : P(Y
(n)
l (0) = zln, 1 ≤ l ≤ b) ̸= 0 for some n},

the following three conditions are verified:

1. (Boundedness). For some function β = β(n) ≥ 1 and for all t < TD

max
1≤l≤b

|Y (n)
l (t+ 1) − Y

(n)
l (t)| ≤ β;

2. (Trend). For some function λ = λ1(n) = o(1) and for all l ≤ b and t < TD

|E[Y
(n)
l (t+ 1) − Y

(n)
l (t)|Ht] − fl(t/n, Y

(n)
1 (t)/n, ..., Y

(n)
b (t)/n)| ≤ λ1;

3. (Lipschitz). For each l the function fl is continuous and satisfies a Lipschitz condition on

D with all Lipschitz constants uniformly bounded.

Then the following holds

(a) For (0, ẑ1, ..., ẑb) ∈ D, the system of differential equations

dzl
ds

= fl(s, z1, ..., zb), l = 1, ..., b,

has a unique solution in D, zl : R → R for l = 1, . . . , b, which passes through zl(0) = ẑl,

l = 1, . . . , b,, and which extends to points arbitrarily close to the boundary of D.
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(b) Let λ > λ1 with λ = o(1). For a sufficiently large constant C, with probability 1 −
O
(
bβ
λ exp

(
−nλ3

β3

))
, we have

Y
(n)
l (t) = nzl(t/n) +O(λn)

uniformly for 0 ≤ t ≤ σn and for each l. Here zl(t) is the solution in (a) with ẑl =

Y
(n)
l (0)/n, and σ = σ(n) is the supremum of those s to which the solution can be extended

before reaching within l∞-distance Cλ of the boundary of D.

Proof. The solution is unique from a standard result in the theory of first order differential

equations (see Hurewicz[99], Chapter 2, Theorem 11). We now present the proof of part (b).

We will use the following supermartingale inequality. The proof follows from exactly the same

proof as Azuma’s inequality (see [155], Lemma 4.2).

Lemma A.11. Let {Xi}ti=0 be a supermartingale with X0 = 0 and Xi − Xi−1 ≤ ci for i ≥ 1

and some constants ci. Then for all α > 0,

P(Xt ≥ α) ≤ exp

(
− α2

2
∑
c2i

)
.

Let us define ω = ⌈nλ/β⌉, α = nλ3/β3 and let 0 ≤ t ≤ σn. If ω < n2/3 then β/λ > n1/3 and

then the probability in the conclusion is not restricted and there is nothing to prove.

Lemma A.12. For some constant B with probability 1 −O(e−α), we have

|Yl(t+ ω) − Yl(t) − ωfl(t/n, I1(t)/n, ..., Ib(t)/n)| < Bωλ.

Proof. For 0 ≤ k < ω, we have kβ/n = O(λ) and by the Trend and Lipschitz hypotheses

E [Yl(t+ k + 1) − Yl(t+ k)|Ht+k] = fl(
t+ k

n
,
Y1(t+ k)

n
, ...,

Yb(t+ k)

n
) +O(λ)

= fl(t/n, Y1(t)/n, ..., Yb(t)/n) +O(λ).

Hence there exists a function g(n) = O(λ) such that conditional on Ft,

f(k) := Yl(t+ k) − Yl(t) − kfl(t/n, Y1(t)/n, ..., Yb(t)/n) − kg(n)

is a supermartingale with respect to the sequence σ-fields generated by Ft, ..., Ft+ω. By the

boundedness hypothesis

|f(k + 1) − f(k)| ≤ β +O(1) ≤ κβ
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for some constant κ > 0. Therefore, by Lemma A.11,

P
(
|Yl(t+ ω) − Yl(t) − ωfl(t/n, Y1(t)/n, ..., Yb(t)/n)| ≥ ωg(n) + κβ

√
ωα|Ft

)
≤ 2e−α,

and so the lemma follows.

Let i = ⌊nσ/ω⌋, and let hl(k) = |Yl(kω) − nzl(kω/n)| for 0 ≤ k ≤ i. We have

hl(k + 1) ≤ hl(k) + |A1| + |A2| + |A3|

where

A1 = Yl((k + 1)ω) − Yl(kω) − ωfl(kω/n, Y1(kω)/n, ..., Yb(kω)/n),

A2 = ωz′l(kω/n) + zl(kω/n)n− zl((k + 1)ω/n)n,

A3 = ωfl(kω/n, Y1(kω)/n, ..., Yb(kω)/n) − ωz′l(kω/n).

By Lemma A.12, we have for a suitable universal constant B′, |A1| < B′ωλ with probability

1−O(e−α) (This is the point where the assumption, the scaled variables not approaching within

distance Cλ of the boundary of Ω, is justified). Since fl satisfies the Lipschitz hypothesis, we

have

|A2| = O(n
(ω
n

)2
) < B′′ω2/n

for a suitable constant B′′. Finally using the same arguments as above we obtain

|A3| <
B′′ω

n
hl(k).

Set B = max{B′, B′′}. By induction on k, we infer that

P (hl(k) ≥ Bk for some k ≤ i, 1 ≤ l ≤ b) = O(bie−α), (A.12)

where

Bk = Bω (λ+ ω/n)
(

(1 +Bω/n)k − 1
) n

Bω
.

We have Bk = O(nλ + ω) = O(nλ) since β is bounded below. This proves the theorem in

the case t = kω. Assume t ≤ nσ. From time ⌊t/ω⌋ω to t the change in Y and z is at most

ωβ = O(nλ) and the theorem follows.
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Remark A.13. ([155]) A version of the theorem also holds with the number a of variables b

function of n, the domain D a function of n but with all Lipschitz constants uniformly bounded,

and each function fl depends only on s and z1, ..., zl.

We will also use the following corollary of the above theorem, which is namely Theorem 6.1

of [155]. This theorem states that, as long as Condition 3 holds in D, the solution of the system

of equations above can be extended beyond the boundary of D̂, into D.

Corollary A.14. For any set D̂ ⊆ Rb+1, let TD̂ = TD̂(Y
(n)
1 , ..., Y

(n)
b ) be the minimum t such

that ( t
n ,

Y
(n)
1 (t)
n , . . . ,

Y
(n)
b (t)

n ) /∈ D̂ (the stopping time). Assume in addition that the first two

hypotheses of Theorem A.10 are verified but only within the restricted range t < TD̂ of t. Then

the conclusions of the theorem hold as before, after replacing 0 ≤ t ≤ σn by 0 ≤ t ≤ min{σn, TD̂}.

Proof. For 1 ≤ j ≤ b , define random variables Ŷ
(n)
j by

Ŷ
(n)
j (t+ 1) =

{
Y

(n)
j (t+ 1) if t < TD̂
Y

(n)
j (t) + fj(t/n, Y

(n)
1 (t)/n, ..., Y

(n)
b (t)/n) otherwise

for all t ≥ 0. Then the Ŷ
(n)
j satisfy the hypotheses of Theorem A.10, and so the corollary follows

as Ŷ
(n)
j (t) = Y

(n)
j (t) for 0 ≤ t < TD̂.
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Résumé de thèse.

Le but de cette thèse est d’étudier la diffusion et les épidémies dans un graphe aléatoire avec des degrés

donnés. ,Tout d’abord, nous considérons l’impact des poids sur les distances dans les graphes aléatoires

dilués. Nous interprétons ces poids comme des retards, et les prenons comme des variables aléatoires

exponentielles i.i.d.. Nous analysons le temps d’inondation défini comme le temps minimum nécessaire

pour atteindre tous les noeuds à partir d’un noeud choisi d’une manière uniforme, et le diamètre corre-

spondant au pire cas pour le temps d’inondation. Sous certaines conditions de régularité sur les suites de

degrés du graphe aléatoire, nous montrons que ces quantités croissent comme le logarithme de n, lorsque

la taille du graphe n tend vers l’infini. Nous trouvons également la valeur exacte des préfacteurs. Ce

resultat nous permet d’analyser un algorithme de transmission asynchrone dans les graphes aléatoires

réguliers. Nous montrons que la version asynchrone de l’algorithme est plus performante que sa version

synchronisée : quand la taille du graphe est suffisament grande, il atteindra l’ensemble du réseau plus

rapidement, même si le dynamique local est similaire en moyenne.

Deuxièmement, nous étudions la diffusion et les cascades dans les graphes aléatoires. Notre modèle de

diffusion peut être considéré comme une variante d’un processus de croissance d’un automate cellulaire :

supposons que chaque site puissent être dans l’un des deux états possibles, inactif ou actif. Les paramètres

du modèle sont deux fonctions données θ : N → N et α : N → [0, 1]. Au début du processus, chaque

noeud v de degré dv devient actif avec une probabilité α(dv) indépendamment des autres sommets. La

présence de sommets actifs déclenche un processus de percolation : si un noeud v est actif, il reste actif

pour toujours. Et s’il est inactif, il deviendra actif si au moins θ(dv) de ses voisins sont actifs. Dans le

cas où α(d) = α et θ(d) = θ, pour chaque d ∈ N, notre modèle de diffusion est équivalent à ce qui est

appelé ”percolation bootstrap’. Notre résultat principal est un théorème qui nous permet de trouver la

proportion finale des sommets actifs dans le cas asymptotique, c’est-à-dire lorsque n → ∞. Cela se fait

par une analyse du processus sur le multigraphe associé au graphe aléatoire.

Enfin, nous réalisons une analyse asymptotique des cascades de défaut dans les réseaux financiers.

En utilisant des méthodes analytiques, nous obtenons une expression pour la taille asymptotique d’une

cascade de défaut en fonction des caractéristiques du réseau. Ce résultat est utilisé pour obtenir un critère

pour la résilience d’un réseau financier aux chocs de petite taille. Nos résultats soulignent le rôle joué

par les expositions contagieuses, et montrent notamment que les noeuds qui sont étroitement liés et sur-

exposés sont ceux qui contribuent le plus à la fragilité du réseau. Ces résultats asymptotiques concordent

avec des simulations faites pour les réseaux dont les tailles sont réalistes, montrant la pertinence de l’étude

des réseaux de taille infinie pour la régulation macro-prudentielle.

MOTS-CLÉS : graphes aléatoires, percolation de premier passage, diamètre pondéré, transmission

asynchrone, percolation bootstrap, cascades, contagion financière, risque systémique.

AMS SUBJECT CLASSIFICATIONS: 05C80, 60K35, 82B43, 60C05, 60E15, 68R10.
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